所属成套资源:浙教版数学八年级下册 专项训练
初中数学浙教版八年级下册第四章 平行四边形4.2 平行四边形习题
展开这是一份初中数学浙教版八年级下册第四章 平行四边形4.2 平行四边形习题,文件包含专题42平行四边形及其性质-重难点题型举一反三浙教版解析版docx、专题42平行四边形及其性质-重难点题型举一反三浙教版原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
专题4.2 平行四边形及其性质-重难点题型
【浙教版】
【知识点1 平行四边形的性质】
平行四边形的性质有:对边平行且相等,对角线互相平分,对角相等,邻角互补,两条平行线之间的距离处处相等,夹在两条平行线间的平行线段相等.
【题型1 平行四边形的性质(求长度)】
【例1】(2021春•天府新区期末)如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,过点A作AF⊥BE,垂足为点F,若AF=5,BE=24,则CD的长为( )
A.8 B.13 C.16 D.18
【变式1-1】(2021秋•九龙坡区校级期末)如图,在▱ABCD中,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,若△CDE的周长为8,则▱ABCD的周长为( )
A.8 B.10 C.16 D.20
【变式1-2】(2021春•淮南月考)在▱ABCD中,对角线AC与BD相交于点O,△BOC的周长为20cm,BC=12cm,则AC+BD的长是( )
A.8cm B.16cm C.24cm D.32cm
【变式1-3】(2021秋•让胡路区校级期末)在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC的长为 .
【题型2 平行四边形的性质(求角度)】
【例2】(2021•河北一模)如图,在平行四边形ABCD中,∠B=60°,AE平分∠BAD交BC于点E,若∠AED=80°,则∠EAC的度数是( )
A.10° B.15° C.20° D.25°
【变式2-1】(2021春•锦州期末)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,点E在▱ABCD的对角线AC上,AE=BE=BC,∠D=105°,则∠BAC的度数是( )
A.35° B.30° C.25° D.20°
【变式2-2】(2021春•西安期末)如图,四边形ABCD为平行四边形,DE⊥BC于点E,BF⊥CD于点F,DE、BF相交于点H,若∠A=60°,则∠EHF的度数为( )
A.100° B.110° C.120° D.150°
【变式2-3】(2021春•西湖区校级期中)如图所示,以▱ABCD的边AB为边向内作等边△ABE,使AD=AE,且点E在平行四边形内部,连接DE,CE,则∠CED的度数为( )
A.150° B.145° C.135° D.120°
【题型3 平行四边形的性质(求面积)】
【例3】(2021春•西湖区校级期中)如图所示,点E为▱ABCD内一点,连接EA,EB,EC,ED,AC,已知△BCE的面积为2,△CED的面积为10,则阴影部分△ACE的面积为( )
A.5 B.6 C.7 D.8
【变式3-1】(2021春•娄星区期末)如图,E、F分别是▱ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q.若S△APD=15,S△BQC=25,则阴影部分的面积为( )
A.40 B.45 C.50 D.55
【变式3-2】(2021春•成华区期末)如图,▱ABCD的面积为S,点P是它内部任意一点,△PAD的面积为S1,△PBC的面积为S2,则S,S1,S2之间满足的关系是( )
A. B.
C. D.无法判定
【变式3-3】(2021秋•海曙区校级期末)如图,在▱ABCD中,点E在边AD上,过E作EF∥CD交对角线AC于点F,若要求△FBC的面积,只需知道下列哪个三角形的面积即可( )
A.△ECD B.△EBF C.△EBC D.△EFC
【题型4 平行四边形的性质与坐标】
【例4】(2021秋•甘井子区期末)如图,平面直角坐标系中,点B,点D的坐标分别为(0,2)和(0,﹣2),以BD为对角线作▱ABCD,若点A的坐标为(2,1),则点C的坐标为 .
【变式4-1】(2021秋•绵阳期末)如图,在平行四边形OABC中,对角线相交于点E,OA边在x轴上,点O为坐标原点,已知点A(4,0),E(3,1),则点C的坐标为( )
A.(1,1) B.(1,2) C.(2,1) D.(2,2)
【变式4-2】(2021秋•张店区期末)如图,已知▱ABCD三个顶点坐标是A(﹣1,0)、B(﹣2,﹣3)、C(2,﹣1),那么第四个顶点D的坐标是( )
A.(3,1) B.(3,2) C.(3,3) D.(3,4)
【变式4-3】(2021•商河县校级模拟)如图,已知平行四边形OABC的顶点A,C分别在直线x=1和x=4上,点O是坐标原点,则点B的横坐标为( )
A.3 B.4 C.5 D.10
【题型5 平行四边形中的最值问题】
【例5】(2021春•舞钢市期末)如图,△ABC中,AB=10,△ABC的面积是25,P是AB边上的一个动点,连接PC,以PA和PC为一组邻边作平行四边形APCQ,则线段AQ的最小值是( )
A.3 B.4 C.5 D.6
【变式5-1】(2021春•河南期末)如图,在△ABC中,AB=AC=4,∠B=15°,点P是射线BA上的一个动点,以AP,PC为邻边作平行四边形APCQ,则边AQ的最小值为( )
A.4 B.2 C.2 D.4
【变式5-2】(2021春•费县期末)如图,在△ABC中,∠BAC=30°,AB=AC=12,P为AB边上一动点,以PA,PC为边作平行四边形PAQC,则对角线PQ的长度的最小值为 .
【变式5-3】(2021•碑林区校级模拟)如图,在▱ABCD中,点E是对角线AC上一点,过点E作AC的垂线,交边AD于点P,交边BC于点Q,连接PC、AQ,若AC=6,PQ=4,则PC+AQ的最小值为 .
【题型6 平行四边形中的折叠问题】
【例6】(2021春•黄浦区期末)如图,在△ABC中,∠ABC=90°,点D在AB边上,将△ACD沿直线CD翻折后,点A落在点E处,如果四边形BCDE是平行四边形,那么∠ADC= .
【变式6-1】(2021•江西)如图,将▱ABCD沿对角线AC翻折,点B落在点E处,CE交AD于点F,若∠B=80°,∠ACE=2∠ECD,FC=a,FD=b,则▱ABCD的周长为 .
【变式6-2】(2021•滨湖区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,D是边AB上一点,连接CD,将△ACD沿CD翻折得到△ECD,连接BE.若四边形BCDE是平行四边形,则BC的长为( )
A. B.3 C.2 D.3
【变式6-3】(2020秋•锦江区校级期中)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,DE交BC于点F,连接CE,则下列结论:①BE=CD;②BF=DF;③S△BEF=S△DCF;④BD∥CE,其中正确的有( )
相关试卷
这是一份数学八年级下册6.1 反比例函数练习,文件包含专题61反比例函数的定义-重难点题型举一反三浙教版解析版docx、专题61反比例函数的定义-重难点题型举一反三浙教版原卷版docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
这是一份初中数学浙教版八年级下册5.3 正方形达标测试,文件包含专题53正方形-重难点题型举一反三浙教版解析版docx、专题53正方形-重难点题型举一反三浙教版原卷版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
这是一份初中数学5.2 菱形课堂检测,文件包含专题52菱形-重难点题型举一反三浙教版解析版docx、专题52菱形-重难点题型举一反三浙教版原卷版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。