![人教版初一《一元一次方程的应用》练习卷(无答案)01](http://img-preview.51jiaoxi.com/2/3/13725943/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版初一《一元一次方程的应用》练习卷(无答案)02](http://img-preview.51jiaoxi.com/2/3/13725943/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版初一《一元一次方程的应用》练习卷(无答案)03](http://img-preview.51jiaoxi.com/2/3/13725943/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
人教版初一《一元一次方程的应用》练习卷(无答案)
展开第6讲 一元一次方程的实际应用
中考内容 | 中考要求 | ||
A | B | C | |
方程 | 了解方程是描述现实世界数量关系的有效模型;了解方程的解的意义;会由方程的解求方程中待定系数的值;了解估计方程解的过程 | 掌握等式的基本性质;能根据具体问题中的数量关系列出方程;能根据具体问题的实际意义,检验方程的解是否合理 | 运用方程与不等式的有关内容解决有关问题 |
一元一次方程 | 了解一元一次方程的有关概念 | 能解一元一次方程 |
1和差倍分问题
一. 列方程解应用题的步骤:
1. 审:审题,分析题中已知什么,求什么,明确各数量之间关系;
2. 设:设未知数(一般求什么,就设什么为);
3. 找:找出能够表示应用题全部意义的一个相等关系;
4. 列:根据这个相等关系列出需要的代数式,进而列出方程;
5. 解:解所列出的方程,求出未知数的值;
6. 答:检验所求解是否符合题意,写出答案(包括单位名称).
二. 设未知数的方法:
1. 直接设未知数:指题目问什么就设什么,它多适用于要求的未知数只有一个的情况;
2. 间接设未知数:指所设的不是所求的,而解得的间接未知数对确定所求的量起中介作用;
3. 引入辅助未知数:为了使题目中的数量关系更加明确,可以引进辅助未知数帮助建立方程.
4. 辅助未知数往往不需要求出,可以在解题时消去.
三. 和差倍分类常用关系式:
1. 比多,则;
2. 比少,则;
3. 是的倍,则;
4. 是的,则.
【例】(2018•开远市一模)甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?
【例】(2018•沾益县一模)某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:
| 进价(元/千克) | 售价(元/千克) |
甲种 | 5 | 8 |
乙种 | 9 | 13 |
(1)这两种水果各购进多少千克?
(2)若该水果店按售价销售完这批水果,获得的利润是多少元?
【练习】(2017秋•越城区期末)为了提升绍兴城市环境品质,以杭州G20环境提升为标准,我市最近进行景观环境改造提升,学校也积极响应,组织学生植树活动,已知在甲处植树的有23人,在乙处植树的有17人,现调20人取支援,使在甲处植树的人数是乙处植树人数的2倍多3人,应调往甲、乙两处各多少人?
【练习】(2017秋•淮南期末)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?
2工程问题
1. 工程问题的基本量有:工作量、工作效率、工作时间,三者的关系式为:
①工作量=工作效率×工作时间;
②工作时间=;
③工作效率=.
2. 工程问题中,一般常将全部工作量看作整体,如果完成全部工作的时间为,则工作效率为
【例】(2017秋•黄石期末)一项工程,由甲、乙、丙三人完成,甲单独做需10天完成,乙单独做需12天完成,丙单独需15天完成.现计划7天完成,乙、丙先合做3天后,乙有事,由甲、丙完成剩下工程,问:能否按计划完成?
【例】(2017秋•怀柔区期末)七(1)班芳华和虹霖在做室内值日时,芳华单独做15分钟完成,虹霖单独做9分钟完成,若芳华先单独做3分钟后,虹霖才到,剩下的由两人共同完成,问还需要几分钟才能做完?如果5分钟后要上课了,她们能在上课前做完吗?
【练习】(2017•海口模拟)现有180件机器零件需加工,任务由甲、乙两个小组合作完成.甲组每天加工12件,乙组每天加工8件,结果共用20天完成任务.求甲、乙两组分别加工机器零件多少个.
3行程问题—相遇
一. 行程问题中的三个基本量及其关系:
路程速度时间: .
时间路程速度:.
速度路程时间:.
(其中为路程,为速度,为时间)
二. 相遇问题:快行距慢行距原距:.
(快速慢速)时间距离: .
【例】(2017秋•拱墅区期末)甲、乙两人沿运动场中一条400米长的环形跑道匀速跑步,甲的速度是乙速度的1.5倍,他们从同一起点,朝同一方同时出发,8分钟后甲第一次追上乙.
(1)求甲、乙两人跑步的速度分别为多少?
(2)若甲、乙两人从同一起点,同时背向而行,经过多少时间两人恰好第五次相遇?
【练习】(2017秋•延边州期末)小刚和小强从A、B两地同时出发,小刚骑自行车,小强步行,沿同一条路线相向匀速而行,出发后2h两人相遇,相遇时小刚比小强多行进24km,相遇后0.5h小刚到达B地,两人的行进速度分别是多少?相遇后经过多少时间小强到达A地?
【练习】(2017秋•句容市期末)如图,长方形ABCD中,AB=4cm,BC=8cm.点P从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→D→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了3cm,并沿B→C→D→A的路径匀速运动;点Q保持速度不变,继续沿原路径匀速运动,3s后两点在长方形ABCD某一边上的E点处第二次相遇后停止运动.设点P原来的速度为xcm/s.
(1)点Q的速度为 ____cm/s(用含x的代数式表示);
(2)求点P原来的速度.
(3)判断E点的位置并求线段DE的长.
4行程问题—追及
一. 行程问题中的三个基本量及其关系:
路程速度时间: .
时间路程速度:.
速度路程时间:.
(其中为路程,为速度,为时间)
二. 追及问题:快行距慢行距原距:.
(快速慢速)时间距离:.
【例】(2017秋•永新县期末)某中学学生步行到郊外旅行.七年级(1)班学生组成前对,步行速度为4千米/时,七(2)班的学生组成后队,速度为6千米/时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/时.
(1)后队追上前队需要多长时间?
(2)后队追上前队时间内,联络员走的路程是多少?
(3)两队何时相距2千米?
【练习】(2017秋•建平县期末)甲、乙两人在300米环形跑道上练习长跑,甲的速度是6米/秒,乙的速度是7米/秒.
(1)如果甲、乙两人同地背向跑,乙先跑2秒,再经过多少秒两人相遇?
(2)如果甲、乙两人同地同向跑,乙跑几圈后能首次追上甲?
【练习】(2017秋•滕州市期末)如图,在长方形ABCD中,AB=14cm,AD=8cm,动点P沿AB边从点A开始,向点B以1cm/s的速度运动;动点Q从点D开始沿DA→AB边,向点B以2cm/s的速度运动.P,Q同时开始运动,当点Q到达B点时,点P和点Q同时停止运动,用t(s)表示运动的时间.
(1)当点Q在DA边上运动时,t为何值,使AQ=AP?
(2)当t为何值时,AQ+AP等于长方形ABCD周长的?
(3)当t为何值时,点Q能追上点P?
综合练习
一.选择题(共3小题)
1.如图,电子蚂蚁P、Q在边长为1个单位长度的正方形ABCD的边上运动,电子蚂蚁P从点A出发,以个单位长度/秒的速度绕正方形作顺时针运动,电子蚂蚁Q从点A出发,以个单位长度秒的速度绕正方形作逆时针运动,则它们第2019次相遇在( )
A.点A B.点B C.点C D.点D
2.已知某座桥长800米,现有一列火车从桥上通过,测得火车从开始上桥到完全通过共用了1分钟,这列火车完全在桥上的时间为40秒,则火车的速度和车长分别是( )
A.20米/秒,200米 B.18米/秒,180米
C.16米/秒,160米 D.15米/秒,150米
3.在2019年1月份的月历表中,任意框出表中竖列上三个相邻的数(如图,如框出了10,17,24),则这三个数的和可能的是( )
A.21 B.27 C.50 D.75
二.填空题(共1小题)
4.春节假期,小陈驾车从珠海出发到香港,去时在港珠澳大桥上用了40分钟,返回时平均速度提高了25千米/小时,在港珠澳大桥上的用时比去时少了10分钟,求小陈去时的平均速度,设他去时驾车的平均速度为x千米/小时,则可列方程为 .
三.解答题(共3小题)
5.甲、乙两人在400米的环形跑道上进行早锻炼,甲慢跑速度为105米/分,乙步行速度为25米/分,两人同时同地同向出发,经过多少时间,两人第一次相遇?(请列一元一次方程求解)
6.用A4纸在某眷印社复印文件,复印页数不超过20时,每页收费1元;复印页数超过20时,超过部分每页收费降为0.4元,在某图书馆复印同样的文件,不论复印多少页,每页收费0.8元,当复印的张数超过20页时,请问答以下问题.
(1)复印张数为多少页时,某眷印社与某图书馆的收费相同?
(2)如何选择更省钱?
7.小邢和小华相约放学后去公园跑步,她们一起以4km/h的速度从学校出发,走了15分钟后小邢发现忘了带作业,就以5km/h的速度回学校去拿,到达学校后,又用了6分钟取作业,之后便以同样的速度去追赶小华,结果在距公园3km处追上了小华,试求学校与公园的距离.