广东省深圳市龙华区2022-2023学年九年级上学期期中考试数学试卷(含答案)
展开2022-2023学年第一学期期中学情调查
九年级 数学
2022.11
本试卷分两部分,试卷共6页,满分100分,考试时间90分钟。
注意事项:
1.答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的学校、班级、姓名和考生号;用2B铅笔将对应的考生号码涂黑。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔、圆珠笔和涂改液。不按以上要求作答的答案无效。
一、选择题:本大题共10小题,每小题3分,共30分。每小题只有一个选项符合题目要求。
1.关于x的一元二次方程的二次项系数、一次项系数、常数项分别是( )
A.5,, B.5,2, C.,2,1 D.,,
2.一元二次方程,用配方法解该方程,配方后的方程为( )
A. B. C. D.
3.若,则( )
A. B. C. D.
4.如图,,且,,则AE的长为( )
A.6 B.9 C.3 D.4
5.在今年“十一”期间,小康和小明两家准备进行徒步活动,从塘朗山、阳台山,梧桐山三个地点中分别选择一个地点,他们两家去同一地点徒步的概率是( )
A. B. C. D.
6.如图,在矩形ABCD中,,对角线AC与BD相交于点O,,垂足为E,,则BC的长为( )
A. B.6cm C. D.
7.一花户,有26 m长的篱笆,要围成一边靠住房墙(墙长12 m)的面积为的长方形花园,且垂直于住房墙的一边留一个1 m的门,设垂直于住房墙的其中一边长为x,则可列方程为( )
A. B.
C. D.
8.下列说法中,正确的是( )
A.顺次连接对角线互相垂直的四边形各边中点所组成的图形是菱形
B.关于x的方程有两个不相等实根,则k的取值范围且
C.正方形的对角线所在的直线是它的对称轴它有2条对称轴
D.点P是线段AB的一个黄金分割点(),若,则
9.如图,在正方形ABCD中,对角线AC、BD相交于点O.E、F分别为AC、BD上一点,且,连接AF,BE,EF.若,则的度数为( )
A.55° B.65° C.45° D.70°
10.如图,矩形ABCD中,点E在BC边上,且,作于点F,连接DE,BF,BF的延长线交DE于点O,交CD于点G.以下结论:①,②DE为的角平分线③若,则,④若AE平分,,则矩形ABCD的面积为则正确结论的个数是( )
A.①②③ B.①②④ C.①③④ D.①②③④
二、填空题(本大题共5小题,每小题3分,共15分.)
11.关于x的一元二次方程的一个根为0,则a的值为________.
12.在一个不透明的箱子里装有m个球,其中红球6个,这些球除颜色外都相同,每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回,大量重复试验后发现,摸到红球的频率在0.3,那么可以估算出m的值为________.
13.如图,点E是正方形ABCD中CD边上的中点,对角线交点为O,连接BE交AC于F点,则________.
14.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,,,点P是AC上一动点,点E是AB的中点,则的最小值为________.
15.如图,P是边长为6的正方形的边AD上的一个动点(P与B、C不重合)连接CP,过点B作,将沿CP所在直线翻折得到,延长交CB的延长线于点G。当时,PG的长为________.
三、解答题(本大题共7题,共55分。本大题有7题,其中16题9分,17题6分,18题6分,19题7分,20题8分,21题9分,22题10分,共55分)
16.解方程
(1) (2)(用配方法)
(3)(用公式法)
17.定义:在边长为1的小正方形方格纸中,把顶点落在方格交点上的线段、三角形、四边形分别称为格点线段、格点三角形、格点四边形,在的正方形网格中,若每一个小正方形的边长均为1,请仅用无刻度直尺按要求画图.
(1)在图①中画一个以AB为边画一个格点正方形.
(2)在图②中画一个格点平行四边形,使平行四边形面积为6
(3)在图③中画一个格点菱形.不是正方形(温馨提示:请画在答题卷相对应的图上)
18.现有甲、乙两个不透明袋子,分别装有3个除颜色外完全相同的小球,其中甲袋装有2个白球、1个红球;乙袋装有2个红球、1个白球.
(1)将甲袋摇匀,然后从甲袋中随机摸出一个小球,摸出的小球是白球的概率________.
(2)A、B两人商定一个游戏规则:摇匀后,从甲、乙两袋中随机各摸出一球,若两球颜色相同,则A获胜;若颜色不同,则B获胜.请用列表法或树状图法说明这个游戏规则对双方是否公平.
19.如图,四边形为菱形,点E在AC的延长线上,.
(1)求证:;
(2)当,时,求AE的长.
20.2022北京冬奥会期间,冰墩墩和雪容融受到人们的广泛喜爱.某网店以每套96元的价格购进了一批冰墩墩和雪容融,由于销售火爆,销售单价经过两次的调整,从每套150元上涨到每套216元,此时每天可售出16套冰墩墩和雪容融.
(1)若销售价格每次上涨的百分率相同,求每次上涨的百分率;
(2)冬奥会闭幕后需求有所下降,需尽快将这批冰墩墩和雪容融售出,决定降价出售.经过市场调查发现:销售单价每降价15元,每天多卖出3套,商店想使每天利润达到2000元,每套价格应为多少元?
21.矩形中,,点E是边BC的中点,连接AE,过点E作AE的垂线EF,与矩形的外角平分线CF交于点F.
【特例证明】(1)如图,当时,求证:;
【类比探究】(2)如图,当时,求的值(用含k的式子表示);
【拓展运用】如图(3),当时,P为边CD上一点,连接AP,PF,,,则BC的长为________.
22.已知:在平面直角坐标系中,直线:与x轴,y轴分别交于A、B两点,直线经过点A,与y轴交于点.
(1)求直线的解析式;
(2)如图1,点P为直线一个动点,是否存在以点P、C、A为顶点的三角形与相似,若存在请求出点P的坐标及此时的面积。
(3)如图2,将沿着x轴平移,平移过程中的记为,请问在平面内是否存在点D,使得以、、C、D为顶点的四边形是菱形?若存在,直接写出点D的坐标.
2022-2023学年度第一学期初三年级期中考试数学
参考与评分标准
一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.
题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
答案 | B | D | D | A | B | A | D | B | B | D |
二、填空题:本题共5小题,每小题3分,共15分.
题号 | 11 | 12 | 13 | 14 | 15 |
答案 | 4 | 20 | 2:1 |
三、解答题:本题共7题,共55分.解答应写出文字说明、证明过程或演算步骤.
16.(1)解:·····································································1分
·················································································2分
或
或···············································································3分
(2),
解:,
,
,···············································································1分
,···············································································2分
,
或,
∴,·············································································3分
(3)
解:
∵,·············································································1分
∴,·············································································2分
解得:,··········································································3分
17.(1)
(2)
(3)
每个图符合条件即可,每个图2分
18.解:(1)共有3种等可能结果,而摸出白球的结果有2种
∴;·············································································2分
(2)根据题意,列表如下:
| 红1 | 红2 | 白 |
白1 | (白1,红1) | (白1,红2) | (白1,白) |
白2 | (白2,红1) | (白2,红2) | (白2,白) |
红 | (红,红1) | (红,红2) | (红,白) |
由上表可知,共有9种等可能结果,其中颜色不相同的结果有5种,颜色相同的结果有4种
∴,,···········································································5分
∵,∴这个游戏规则对双方不公平.·····················································6分
19.(1)证明:∵四边形ABCD为菱形,
∴,
∵,
∴,·············································································2分
∵,
∴;·············································································3分
(2)解:∵,
∴···············································································5分
∵菱形,∴,,
∴···············································································6分
∴.·············································································7分
20.解:(1)设每次上涨的百分率为x,根据题意得:,·····································3分
解得:,(不合题意,舍去),························································4分
答:每次上涨的百分率为20%;
(2)设每套价格降价为a元
根据题意得:,····································································6分
·················································································7分
售价:元
答:商店使每天利润达到2000元,每套价格应为196元.······································8分
21.证明:如图,在BA上截取,连接EH.
∵,
∴.
∵,,
∴,·············································································1分
∴..
∵CF平分,,
∴.
∴.·············································································2分
∵,
∴,
∵,
∴,
∵,,
∴,
∴,∴;··········································································3分
(2)解:在BA上截取,连接EH.
∵,,
∴,
∴,
∵CF平分,,
∴.
∴,
∴,
∴,·············································································5分
∴,
∵,E是BC边的中点,
∴设
∴,
∴;·············································································6分
(3)············································································9分
∵
∴为等腰直角三角形
为等腰直角三角形
易证
∴
∵由(2)得
∴
易证
点P为AQ中点
∴
易知
又∵由(2)知
∴
易证四边形为正方形
,
由(2)得
在中,,由勾股定理得
22.解:(1)设直线的解析式,
∵直线:与x轴,y轴分别交于A、B两点,∴,,
∵直线经过点A,与y轴交于点,························································1分
∴,·············································································2分
∴ ∴直线的解析式:;······························································3分
(2)设
当时,
∴
当时,
∴
∴
即
在中,
∴
在中,
∴
存在以点P、C、A为顶点的三角形与相似,理由如下:
∵
∴当时,
解得:(舍),
P点坐标··········································································4分
过点P作轴于点D,
·················································································5分
若P与B重合, 此时三角形ABC的面积为6·················································6分
综上所述存在点 面积为15或6
(3)设
当沿x轴向左平移时
设,则,,
①当时
,,,
∴即∴
②当时
∴,,,
∴即∴
③当时
(舍),
∴,,,
∴即∴
当沿x轴向右平移时
设,则,,
∵
∴
∴,,,
∴即∴
综上所述:符合条件的点D的坐标为或或·················································10分
2024年广东省深圳市龙华区九年级中考二模数学试卷: 这是一份2024年广东省深圳市龙华区九年级中考二模数学试卷,共6页。
广东省深圳市龙华区2023-2024学年九年级上学期11月期中数学试题: 这是一份广东省深圳市龙华区2023-2024学年九年级上学期11月期中数学试题,共4页。
2022-2023学年广东省深圳市龙华区七年级(上)期末数学试卷(含答案解析): 这是一份2022-2023学年广东省深圳市龙华区七年级(上)期末数学试卷(含答案解析),共17页。试卷主要包含了选择题,填空题,计算题等内容,欢迎下载使用。