|教案下载
终身会员
搜索
    上传资料 赚现金
    第三章函数的概念与性质 单元测试卷——2021-2022学年高一上学期数学人教A版(2019)必修第一册
    立即下载
    加入资料篮
    第三章函数的概念与性质 单元测试卷——2021-2022学年高一上学期数学人教A版(2019)必修第一册01
    第三章函数的概念与性质 单元测试卷——2021-2022学年高一上学期数学人教A版(2019)必修第一册02
    第三章函数的概念与性质 单元测试卷——2021-2022学年高一上学期数学人教A版(2019)必修第一册03
    还剩13页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第三章函数的概念与性质 单元测试卷——2021-2022学年高一上学期数学人教A版(2019)必修第一册

    展开
    这是一份第三章函数的概念与性质 单元测试卷——2021-2022学年高一上学期数学人教A版(2019)必修第一册,共16页。

    第三章单元测试卷

    班级:___________姓名:___________

    评卷人

    得分

     

     

    一、单选题(每题5分,共40分)

    1.已知幂函数的图象过点,则   

    A B2 C1 D4

    2.某人去上班,先跑步,后步行.如果y表示该人离单位的距离,x表示出发后的时间,那么下列图象中符合此人走法的是(    .

    A  B

    C D

    3.下列四个函数中,在上为增函数的是(   

    A B C D

    4.下列哪组中的两个函数是同一函数(   

    A B C D

    5.函数是定义在上的奇函数.若,则的值为(   

    A6 B5 C4 D3

    6.函数f(x)=x2+2(a-1)x+2在区间(-∞4)上递减,则a的取值范围是(   

    A B C D

    7.给定函数对于表示中的较小者,记为,则的最大值为(   

    A B C D

    8.设函数,若对任意恒有,则实数a的取值范围为(   

    A B C D

     

    评卷人

    得分

     

     

    二、多选题(每题5分,共20分)

    9.已知幂函数的图像经过,则幂函数具有的性质是(   

    A.在其定义域上为增函数  B.在上单调递减 

    C.奇函数  D.定义域为

    10.下列函数中,值域为的是(   

    A B C D

    11.已知奇函数是定义在上的减函数,且,若,则下列结论一定成立的是(   

    A B C D

    12.下列命题,其中正确的命题是(   

    A.函数上单调递增

    B.函数上是减函数

    C.函数的单调区间是

    D.已知上是增函数,若,则有

     

     

    评卷人

    得分

     

     

    三、填空题(每题5分,共20分)

    13.已知函数,则___________.

    14.函数的定义域___

    15.构造一个定义在上的奇函数___________.

    16.设的值域为,则实数的值组成的集合是___________

     

     

    评卷人

    得分

     

     

    四、解答题(第1710分,18-22题每题12分,共70分)

    17.(1)已知f(x)的定义域为[02],求y=f(x+1)的定义域;

    2)已知y=f(x+1)的定义域为[02],求f(x)的定义域;

    3)已知函数y=f(2x﹣1)的定义域为[﹣11],求函数y=f(x﹣2)的定义域.

     

     

     

     

     

     

    18.求下列函数的解析式

    1)已知f(x)=x2+3x+2,求f(x+1)

    2)已知f(x2+1)=3x4+2x2﹣1,求f(x)

    3)已知f(x)是一次函数,且满足3f(x+1)﹣2f(x﹣1)=2x+17,求f(x).

     

     

     

     

     

     

     

    19.已知函数

    1)求证:上是增函数;

    2)判断上的单调性(只写结论不必给出理由),并求出上的最值.

     

     

     

     

     

    20.已知函数的定义域为,且对任意的,都有成立.若当时,.

    1)试判断的奇偶性;

    2)试判断的单调性;

    3)解不等式.

     

     

     

     

     

    21.食品安全问题越来越引起人们的重视,为了给消费者提供放心的蔬菜,某农村合作社搭建了两个无公害蔬菜大棚,分别种植西红柿和黄瓜,根据以往的种植经验,发现种植西红柿的年利润P(单位:万元),种植黄瓜的年利润Q(单位:万元)与投入的资金x4≤x≤16,单位:万元)满足P=+ 8Q=.现合作社共筹集了20万元,将其中8万元投入种植西红柿,剩余资金投入种植黄瓜.求这两个大棚的年利润总和.

     

     

     

     

     

    22.已知函数是定义在上的奇函数,且当时,

    1)求函数的解析式;

    2)函数,当时,求函数的最小值.

     

     

     

     


    参考答案

    1D

    【分析】

    ,然后将点代入可求出,从而可求出解析式,进而可求得的值

    【详解】

    由题意设

    因为幂函数的图象过点

    所以,得

    所以

    所以

    故选:D

    2D

    【分析】

    根据随时间的推移该人所走的距离的大小的变化快慢,从而即可获得问题的解答,即先利用时的函数值排除两项,再利用曲线的斜率反映行进速度的特点选出正确结果

    【详解】

    解:由题意可知:时所走的路程为0,离单位的距离为最大值,排除AC

    随着时间的增加,先跑步,开始时的变化快,后步行,则的变化慢,

    所以适合的图象为D

    故选:D

    3D

    【分析】

    根据题意,依次判断各选项中函数的单调性即可.

    【详解】

    对于A,在区间为减函数,故A不符合题意;

    对于B的对称轴为直线,且开口向上,所以函数在上单调递减,在上单调递增,故B不符合题意;

    对于C,在区间为减函数,故C不符合题意;

    对于D,所以函数在区间为增函数,故D符合题意.

    故选:D.

    4B

    【分析】

    利用两个函数相同的定义,定义域相同且对应法则相同,依次判断即可

    【详解】

    选项A定义域为定义域为R,故不为同一函数;

    选项B,两个函数定义域都为R,且,故两个函数是同一个函数;

    选项C定义域为R定义域为,故不为同一个函数;

    选项D定义域为定义域为,故不为同一个函数.

    故选:B

    5A

    【分析】

    由奇函数的定义域可得的值,再由解出,进而求出答案.

    【详解】

    函数是定义在上的奇函数,则,解得.又,则,所以

    故选:A

    6B

    【分析】

    利用二次函数的性质,比较对称轴和区间端点的大小,列不等式可得a的取值范围.

    【详解】

    函数f(x)的对称轴是,开口向上,则,解得

    故选:B

    7C

    【分析】

    先把写成分段函数的形式,再求最大值即可.

    【详解】

    解:令,即,解得,

    所以

    时,

    时,,

    所以函数的最大值为3

    故选:

    8D

    【分析】

    转化,分讨论,参变分离即得解

    【详解】

    由题意,对任意恒有

    1)当时,恒成立,

    2)当时,,即

    ,由于都在单调递减

    故函数单调递减,故,故

    3)当时,,即

    ,由于都在单调递减

    故函数单调递减,故,故

    综上:

    故选:D

    9BC

    【分析】

    设幂函数,将代入解析式即可求出解析式,根据幂函数性质判断选项即可.

    【详解】

    设幂函数

    幂函数图象过点

    定义域为,满足,是奇函数,值域为,在定义域内不单调,在上单调递减.

    故选:BC

    10AC

    【分析】

    A.函数的值域为,所以该选项符合题意;

    B.时,,所以该选项不符合题意;

    C.函数的值域为,所以该选项符合题意;

    D.函数的值域不是,所以该选项不符合题意.

    【详解】

    A.     ,所以函数的值域为,所以该选项符合题意;

    B. ,当时,,所以该选项不符合题意;

    C. ,所以函数的值域为,所以该选项符合题意;

    D. ,所以函数的值域不是,所以该选项不符合题意.

    故选:AC

    11AC

    【分析】

    根据奇函数性质得,即得,可判断A; ,根据单调性可得,即可判断B;先根据定义以及奇函数性质得,再根据函数单调性判断C; 根据定义以及奇函数性质得,即可判断D.

    【详解】

    因为为定义在上的奇函数,所以

    因为,所以,故A正确;

    因为为定义在上的减函数,且

    .所以,故B不一定成立;

    因为,所以

    所以,因为是定义在上的减函数,

    所以,所以

    ,故C正确,选项D错误.

    故选:AC

    12AD

    【分析】

    根据函数单调性的定义和复合函数单调性法则依次讨论各选项即可得答案.

    【详解】

    解:对于A选项,函数的对称轴为,开口向上,所以在上单调递增,故正确;

    对于B选项,函数上不具有单调性,故错误;

    对于C选项,解不等式,函数得定义域为,故错误;

    对于D选项,由,由于上是增函数,故,所以,故正确.

    故选:AD

    13.

    【分析】

    先求解得,由,再代入解析式求即可

    【详解】

    由题意,

    ,故.

    故答案为:

    14

    【分析】

    依题意可得偶次方根的被开方数为非负数,即可得到不等式,解得即可;

    【详解】

    解:因为,所以,即,解得,故函数的定义域为

    故答案为:

    15(答案不唯一)

    【分析】

    利用奇函数的定义即可得出答案.

    【详解】

    若函数为奇函数,则

    所以.

    故答案为:

    16

    【分析】

    根据值域为[0,+∞),分析可得,函数f(x)ax22ax3开口向上,且最小值要小于等于0,列出方程,即可得结果.

    【详解】

    因为函数的值域为[0,+∞)

    设函数f(x)ax22ax3,当时,显然不成立;

    ,二次函数开口向下,有最大值,值域不为[0,+∞),不成立;

    ,二次函数开口向上,要保证值域为[0,+∞),则最小值要小于等于0

    ,解得a≥3.

    故答案为:[3,+∞)

    17.(1[﹣11];(2[13];(3[﹣13].

    【分析】

    1)由f(x)的定义域为[02],可得0≤x≤2,进而得出0≤x+1≤2,解不等式可得y=f(x+1)的定义域;

    2)由y=f(x+1)的定义域为[02],可得0≤x≤2,进而求出x+1的范围,即为f(x)的定义域;

    3)由函数y=f(2x﹣1)的定义域为[﹣11],可得﹣1≤x≤1,进而求出2x﹣1的范围,即为x﹣2的范围,解不等式得出x的范围,为所求函数定义域.

    【详解】

    1)已知f(x)的定义域为[02]

    0≤x≤2

    0≤x+1≤2,得﹣1≤x≤1

    y=f(x+1)的定义域为[﹣11]

    2)已知y=f(x+1)的定义域为[02]

    0≤x≤2

    1≤x+1≤3

    y=f(x)的定义域为[13]

    3)已知函数y=f(2x﹣1)的定义域为[﹣11]

    ﹣1≤x≤1,则﹣2≤2x≤2﹣3≤2x﹣1≤1

    ﹣3≤x﹣2≤1,得﹣1≤x≤3

    即函数y=f(x﹣2)的定义域为[﹣13].

    18.(1f(x+1)=x2+5x+6;(2f(x)=3x2﹣4x;(3f(x)=2 x+7.

    【分析】

    1)以x+1代替x化简计算,可得f(x+1)

    2)令x2+1=t,则x2=t﹣1,代入解析式求出f(t),进而可得f(x)

    3)设f(x)=kx+b,代入已知等式化简计算,利用待定系数法求出的值,进而得出f(x)

    【详解】

    1f(x+1)=(x+1)2+3(x+1)+2=x2+5x+6

    f(x+1)=x2+5x+6

    2)令x2+1=t,则x2=t﹣1

    f(t)=3(t﹣1)2+2(t﹣1)﹣1=3t2﹣4t

    f(x)=3x2﹣4x

    3)设f(x)=kx+b

    f(x+1)=k(x+1)+b=kx+k+bf(x﹣1)=k(x﹣1)+ b=kxk+b

    代入3f(x+1)﹣2f(x﹣1)=2x+17得:3(kx+k+b)﹣2(kxk+b)=2 x+17

    整理得,kx+5k+b=2x+17

    k=2b=7

    f(x)=2x+7.

    19.(1)见解析;(2上的单调单调递减,上的最小值为;最大值为

    【分析】

    1)利用函数单调性的定义,设,则通分化简得到,然后进行论证即可.

    2)类似(1)中方法得到上的单调单调递减.然后根据在上的单调性,得到最大值和最小值.

    【详解】

    1)设,则

                      
      
      
    上递增;

    2上的单调单调递减.

    所以[1,2]上单调递减,在(2,5]单调递增,

    ,

    上的最小值为;最大值为

    20.(1)奇函数;(2)在上为减函数;(3.

    【分析】

    1)用赋值法先求出,再令,即可得证;

    2)对已知等式赋值,令,结合函数单调性定义,即可证明结论;

    3)利用单调性和奇偶性,转化为自变量的不等量关系,即可解出不等式.

    【详解】

    1)函数的定义域为,定义域关于原点对称.

    ,则

    ,则是奇函数

    2)任取,且,由题意得,

    ,又上为减函数.

    3)由(2)得,,即,解得,.

    不等式的解集为.

    2139(万元)

    【分析】

    分别代入数据计算PQ,然后求和即得

    【详解】

    P=,Q=,

    P+Q=24+15=39(万元).

    这两个大棚的年利润总和为39(万元).

    22.(1;(2)答案不唯一,具体见解析.

    【分析】

    1)根据函数的奇偶性来求得的解析式.

    2)先求得的解析式,对进行分类讨论,由此求得的最小值.

    【详解】

    1函数是定义在R上的奇函数,

    时,此时

    时,

    函数的解析式为:

    2)函数

    二次函数对称轴为:

    时,即时,

    时,即时,

    时,即时,

    综上,当时,

    时,

    时,.


     

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map