所属成套资源:2022-2023学年北师大九年级数学上册《 考点解读》专题训练
- 专题2.4 解一元二次方程-一因式分解法(能力提升)-2022-2023学年九年级数学上册《考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题2.4 解一元二次方程-一因式分解法(专项训练)-2022-2023学年九年级数学上册《 考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题2.5 一元二次方程的根与系数关系(能力提升)-2022-2023学年九年级数学上册《考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题2.5 一元二次方程的判别式、根与系数(专项训练)-2022-2023学年九年级数学上册《 考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题2.6 一元二次方程应用-变化率问题、传播、比赛问题(专项训练)-2022-2023学年九年级数学上册《考点解读•专题训练》(北师大版) 试卷 0 次下载
专题2.5 一元二次方程的根与系数关系(知识解读)-2022-2023学年九年级数学上册《 考点解读•专题训练》(北师大版)
展开
这是一份专题2.5 一元二次方程的根与系数关系(知识解读)-2022-2023学年九年级数学上册《 考点解读•专题训练》(北师大版),共9页。
专题2.5 一元二次方程的根与系数关系(知识解读)【直击考点】 【学习目标】1、理解一元二次方程根与系数的关系;2、灵活运用韦达定理解决有关式子的变形运算。【知识点梳理】考点1 一元二次方程的根与系数:根与系数的关系:即的两根为,则,。利用韦达定理可以求一些代数式的值(式子变形),如 解题技巧: 当一元二次方程的题目中给出一个根让你求另外一个根或未知系数时,可以用韦达定理 【典例分析】【考点1 一元二次方程的根与系数】 【例1】(2022•三水区一模)关于x的一元二次方程x2+px﹣2=0的一个解为x1=2,则另一个解x2为( )A.1 B.﹣1 C.﹣2 D.2【变式1-1】(2021秋•临海市期末)若一元二次方程x2﹣5x+k=0的一根为2,则另一个根为( )A.3 B.4 C.5 D.6【变式1-2】(2021•榕江县模拟)已知关于x的一元二次方程5x2+kx﹣6=0的一个根是2.则另一个根是( )A.﹣ B. C.3 D.﹣3【变式1-3】(2022•南海区一模)若x=5是方程x2﹣6x+k=0的一个根,则此方程的另一个根是( )A.1 B.2 C.3 D.4【例2】(2021•贵港)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是( )A.3 B.1 C.﹣1 D.﹣3【变式2-1】(2022春•玉山县月考)方程x2+3x﹣4=0的两根分别为x1,x2,则x1+x2等于( )A.﹣4 B.4 C.﹣3 D.3【变式2-2】(2022•东坡区校级模拟)已知x1,x2分别为一元二次方程x2+4x﹣5=0的两个实数解,则的值为( )A. B. C.1 D.【变式2-3】(2022•东港区校级一模)若m,n是一元二次方程x2﹣5x﹣1=0的两个实数根,则m2﹣6m﹣n+2022的值是( )A.2016 B.2018 C.2020 D.2022【例3】(2021秋•蓬溪县期末)已知关于x的一元二次方程mx2﹣2x﹣1=0有两个不相等的实数根x1,x2.(1)求m的取值范围;(2)当时,求m的值. 【变式3-1】(2021秋•大冶市期末)已知关于x的方程kx2﹣3x+1=0有实数根.(1)求k的取值范围;(2)若该方程有两个实数根,分别为x1和x2,当x1+x1x2=4﹣x2时,求k的值. 【变式3-2】(2022•珠海二模)已知关于x的一元二次方程x2﹣4x+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=10,求k的值. 【变式3-3】(2021•梅州模拟)关于x的方程有两个不相等的实数根.(1)求m的取值范围;(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,请说明理由. 专题2.5 一元二次方程的根与系数关系(知识解读)【直击考点】 【学习目标】3、理解一元二次方程根与系数的关系;4、灵活运用韦达定理解决有关式子的变形运算。【知识点梳理】考点1 一元二次方程的根与系数:根与系数的关系:即的两根为,则,。利用韦达定理可以求一些代数式的值(式子变形),如 解题技巧: 当一元二次方程的题目中给出一个根让你求另外一个根或未知系数时,可以用韦达定理 【典例分析】【考点1 一元二次方程的根与系数】 【例1】(2022•三水区一模)关于x的一元二次方程x2+px﹣2=0的一个解为x1=2,则另一个解x2为( )A.1 B.﹣1 C.﹣2 D.2【答案】B【解答】解:∵关于x的一元二次方程x2+px﹣2=0的一个解为x1=2,∴x1x2=﹣2,即2x2=﹣2,解得:x2=﹣1.故选:B.【变式1-1】(2021秋•临海市期末)若一元二次方程x2﹣5x+k=0的一根为2,则另一个根为( )A.3 B.4 C.5 D.6【答案】A【解答】解:设另一根为a,∵一元二次方程x2﹣5x+k=0的一根为2,∴a+2=5,解得:a=3,则另一根为3.故选:A.【变式1-2】(2021•榕江县模拟)已知关于x的一元二次方程5x2+kx﹣6=0的一个根是2.则另一个根是( )A.﹣ B. C.3 D.﹣3【答案】A【解答】解:设方程的另一个根为t,根据题意得2×t=,解得t=﹣.故选:A.【变式1-3】(2022•南海区一模)若x=5是方程x2﹣6x+k=0的一个根,则此方程的另一个根是( )A.1 B.2 C.3 D.4【答案】A【解答】解:设另一根为a,由根与系数的关系得:5+a=6,解得:a=1.故选:A. 【例2】(2021•贵港)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是( )A.3 B.1 C.﹣1 D.﹣3【答案】B【解答】解:∵α,β是方程x2+x﹣2=0的两个实数根,∴α+β=﹣1,αβ=﹣2,∴α+β﹣αβ=﹣1+2=1,故选:B.【变式2-1】(2022春•玉山县月考)方程x2+3x﹣4=0的两根分别为x1,x2,则x1+x2等于( )A.﹣4 B.4 C.﹣3 D.3【答案】C【解答】解:∵方程x2+3x﹣4=0的两根分别为x1,x2,∴x1+x2=﹣3,故选:C.【变式2-2】(2022•东坡区校级模拟)已知x1,x2分别为一元二次方程x2+4x﹣5=0的两个实数解,则的值为( )A. B. C.1 D.【答案】B【解答】解:∵x1,x2分别为一元二次方程x2+4x﹣5=0的两个实数解,∴x1+x2=﹣4,x1•x2=﹣5.∴===.故选:B.【变式2-3】(2022•东港区校级一模)若m,n是一元二次方程x2﹣5x﹣1=0的两个实数根,则m2﹣6m﹣n+2022的值是( )A.2016 B.2018 C.2020 D.2022【答案】B【解答】解:∵m是一元二次方程x2﹣5x﹣1=0的根,∴m2﹣5m﹣1=0,∴m2﹣5m=1,∵m、n是一元二次方程x2﹣5x﹣1=0的两个根,∴m+n=5,∴m2﹣6m﹣n+2022=m2﹣5m﹣m﹣n+2022=1﹣5+2022=2018.故选:B.【例3】(2021秋•蓬溪县期末)已知关于x的一元二次方程mx2﹣2x﹣1=0有两个不相等的实数根x1,x2.(1)求m的取值范围;(2)当时,求m的值.【答案】(1)m>﹣1且m≠0; (2)4【解答】解:(1)∵关于x的一元二次方程mx2﹣2x﹣1=0有两个不相等的实数根,∴Δ>0且m≠0,即(﹣2)2﹣4×m×(﹣1)>0且m≠0,解得:m>﹣1且m≠0;(2)∵关于的一元二次方程mx²﹣2x﹣1=0有两个不相等的实数根x1,x2,∴x1+x2=,x1x2=﹣,∵x12+x22=x1x2+1,(x1+x2)2﹣2x1x2=x1x2+1,即(x1+x2)2=3x1x2+1,∴()2=﹣+1,即m2﹣3m﹣4=0,解得:m1=4,m2=﹣1,经检验,m1,m2都是分式方程的解,∵m>﹣1且m≠0,∴m的值为4.【变式3-1】(2021秋•大冶市期末)已知关于x的方程kx2﹣3x+1=0有实数根.(1)求k的取值范围;(2)若该方程有两个实数根,分别为x1和x2,当x1+x1x2=4﹣x2时,求k的值.【答案】(1)k≤ (2)1【解答】解:(1)当k=0时,原方程为﹣3x+1=0,解得:x=,∴k=0符合题意;当k≠0时,原方程为一元二次方程,∵该一元二次方程有实数根,∴Δ=(﹣3)2﹣4×k×1≥0,解得:k≤,综上所述,k的取值范围为k≤;(2)∵x1和x2是方程kx2﹣3x+1=0的两个根,∴x1+x2=,x1x2=,∵x1+x1x2=4﹣x2,即x1+x2+x1x2=4,∴+=4,解得:k=1,经检验,k=1是分式方程的解,且符合题意.∴k的值为1.【变式3-2】(2022•珠海二模)已知关于x的一元二次方程x2﹣4x+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=10,求k的值.【答案】(1)k≤5 (2)4【解答】解:(1)根据题意得Δ=(﹣4)2﹣4(k﹣1)≥0,解得k≤5;(2)根据根与系数的关系得x1+x2=4,x1•x2=k﹣1,∵x12+x22=10,∴(x1+x2)2﹣2x1x2=42﹣2(k﹣1)=10,解得k=4,∵k≤5,∴k=4.故k的值是4.【变式3-3】(2021•梅州模拟)关于x的方程有两个不相等的实数根.(1)求m的取值范围;(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,请说明理由.【答案】(1)k≤5 (2)原方程无解,故不存在【解答】解:(1)由,得m>﹣1又∵m≠0∴m的取值范围为m>﹣1且m≠0;(5分) (2)不存在符合条件的实数m.(6分)设方程两根为x1,x2则,解得m=﹣2,此时Δ<0.∴原方程无解,故不存在.(12分)
相关试卷
这是一份专题2.1 一元二次方程(知识解读)-2022-2023学年九年级数学上册《 考点解读•专题训练》(北师大版),共12页。
这是一份专题21.2 一元二次方程的判别式、根与系数(专项训练)-2022-2023学年九年级数学上册《 考点解读•专题训练》(人教版),共13页。试卷主要包含了关于x的一元二次方程mx2+等内容,欢迎下载使用。
这是一份专题21.1 一元二次方程(知识解读)-2022-2023学年九年级数学上册《 考点解读•专题训练》(人教版),共15页。