数学人教版第三章 一元一次方程3.4 实际问题与一元一次方程背景图课件ppt
展开
这是一份数学人教版第三章 一元一次方程3.4 实际问题与一元一次方程背景图课件ppt,共13页。PPT课件主要包含了人均效率,由活动2可以发现,工作量,活动三应用与探究,勿忘我,勿忘他,勿忘移项变号,×40等内容,欢迎下载使用。
学习目标:1.会列一元一次方程解决“工程问题”;2.掌握列方程解决实际问题的一般步骤;3.通过列方程解决实际问题的过程,体会建模思想.学习重点: 建立方程模型解决“工程问题”.
活动一:我校举办冬运会,需要一些广告宣传牌,学校请来两位工人。已知师傅单独完成需要4天,徒弟单独完成需要6天……。
活动二:七年级二班负责学校操场的卫生,如果由一个学生单独打扫需要40分钟,假设每个学生工作效率相同,那么每人每分钟打扫
这是计算工作量的常用数量关系式.
人均效率 × 人数 ×时间
例 我校为了创建市级文明校园,本学期购进一批图书。整理这批图书,由一个人做要40 h 完成.现计划由一部分人先做4 h,然后增加 2人与他们一起做8 h,完成这项工作。假设这些人的工作效率相同,具体应该先安排多少人工作?
分析:人均效率=____________. 工作量= ________________________________。
前一阶段的工作量+后一阶段的工作量=完成的工作总量
第一批人完成的工作量+第二批人完成的工作量=完成的工作总量
两阶段完成的工作量之和=完成的工作总量
设先安排了x人工作4小时。根据题意,得
答:应先安排2名工人工作4小时。
用一元一次方程解决实际问题的基本步骤
一元一次方程的解(x = a)
去分母移项合并系数化为1
活动四:我校举办冬运会,需要一些广告宣传牌,学校请来两位工人。已知师傅单独完成需要4天,徒弟单独完成需要6天。 在制作广告牌中,徒弟先做1天后,再两人合作完成,问徒弟一共做了几天?
若完成后共得到报酬450元。如果按各人完成的工作量计算报酬,那么该如何分配这笔钱?请你帮他们算一算。
3.各阶段工作量的和=总工作量 各批次人完成的工作量的和=完成的工作总量
通过本节课学习你有哪些收获?
活动五:课堂小结,布置作业
小结:这节课我们学习了行程问题中的相遇和追及问题
相等关系:A车路程+B车路程=相距路程
相等关系: B车路程 = A车先行路程 + A车后行路程或B车路程 = A车路程 + 相距路程
相关课件
这是一份初中数学人教版七年级上册3.4 实际问题与一元一次方程多媒体教学课件ppt,共16页。PPT课件主要包含了配套问题,列表分析,人数和为22人,22-x,工程问题,配套问题与工程问题等内容,欢迎下载使用。
这是一份数学3.4 实际问题与一元一次方程优质ppt课件,文件包含34《实际问题与一元一次方程2工程问题》课件-人教版数学七上pptx、34《实际问题与一元一次方程2工程问题》教案-人教版数学七上docx等2份课件配套教学资源,其中PPT共16页, 欢迎下载使用。
这是一份初中数学人教版七年级上册3.4 实际问题与一元一次方程教学课件ppt,共16页。PPT课件主要包含了配套问题,列表分析,人数和为22人,22-x,工程问题,配套问题与工程问题等内容,欢迎下载使用。