初中数学湘教版八年级上册1.1 分式教学课件ppt
展开
这是一份初中数学湘教版八年级上册1.1 分式教学课件ppt,共23页。PPT课件主要包含了学习目标,新课导入,新课讲解,课堂小结,当堂小练,拓展与延伸等内容,欢迎下载使用。
1.了解分式的概念,理解分式有(无)意义的条件、分式的值为0的条件.(重点) 2.能熟练求出分式有意义的条件、分式的值为0的条件.(难点)
(1)长方形的面积为10,长为7,则宽为( );长方形的面积为S,长为a,则宽为( ).
(2)把体积为200的水倒入底面积为33的圆柱形容器中,则水面高度为( ),把体积为V的水倒入底面积为S的圆柱形容器中,则水面高度为( ).
式子 、 、 有什么共同点?它们与分数有什么相同点和不同点?
以上式子与分数一样都是 (即A÷B)的形式,分数的分子A与分母B都是整数,而这些式子中的A与B都是整式,并且B中都含有字母.
知识点1 分式的概念
(1)分式可看成是两个整式的商,它的分子是被除式,分母是除式,分数线相当于除号,分数线还具有括号的作用.例如: 可以表示为(x-y)÷(x+y),但是(x-y)÷(x+y)是运算式,不是分式.(2)由于字母可以表示不同的数,所以分式比分数更具有一般性.
下列式子中,哪些是分式?哪些是整式?① ② ③ ④
⑤ ⑥ ⑦ ⑧
解:分式有①③⑤⑥⑦⑧ 整式有②④
知识点2 分式有意义、无意义、值为0的条件
我们知道,要使分数有意义,分数中的分母不能为0.要使分式有意义,分式中的分母应满足什么条件?为什么?
当分母不为0,即B≠0时,分式 有意义,当分母为0即B=0,分式 无意义;当分母不为0且分子为0即B≠0且A=0时,分式 的值为零.
(1)分式是否有意义,只与分式中分母的值是否为0有关,而与分子的值是否为0无关.(2)讨论分式有无意义,一定要针对原分式讨论,不能将分式化简后再讨论.(3)分式有意义的条件是指表示分母的整式的值不能为0,并不是说分母中字母的取值不能为0.(4)分式的值是在分式有意义的前提下才可以考虑的,所以使分式 的值为0的条件是A=0且B≠0,二者缺一不可.
下列分式中的分母满足什么条件时分式有意义:(1) (2)(3) (4)
解:(1)要使分式 有意义,则分母3x≠0,即 x≠0; (2)要使分式 有意义,则分母x-1≠0,即 x≠1; (3)要使分式 有意义,则分母5-3b≠0,即 b≠ ; (4)要使分式 有意义,则分母x-y≠0,即 x≠y.
(2)要使分式 有意义,则分母 即 ;
(3)要使分式 有意义,则分母 即 ;
(4)要使分式 有意义,则分母 即 ;
分式有意义、无意义的条件
列式表示下列各量:(1)某村有n个人,耕地40,则人均耕地面积为( ); (2)△ABC的面积为S,BC边的长为a,则高AD为( ); (3)一辆汽车b小时行驶了a km,则它的平均速度为( )km/h;一列火车行驶a km比这辆汽车少用1h,则它的平均速度为( )km/h.
两类式子的区别在于整式的分母中不含字母,而分式的分母中含有字母.
解析:若使得分式有意义,则分式的分母不为0.当x为任何实数时,分式都有意义,即是说明当x为任何实数时,分式的分母都不等于0. 只要选项分式的分母能满足这个条件即是正确选项.
相关课件
这是一份初中数学湘教版八年级上册1.1 分式精品课件ppt,共12页。PPT课件主要包含了新课导入,说一说,推进新课,×-1,a2-1,x-3,最简分式,当x5y3时,巩固练习等内容,欢迎下载使用。
这是一份初中数学湘教版八年级上册1.1 分式评优课课件ppt,共15页。PPT课件主要包含了新课导入,推进新课,分式的定义,解分式,1x3,2x-04,巩固练习,分母同号,分母异号,-3<x<2等内容,欢迎下载使用。
这是一份湘教版八年级上册1.1 分式精品ppt课件,共26页。PPT课件主要包含了学习目标,分式的概念,分式的定义,分式有意义的条件,做一做,变式训练等内容,欢迎下载使用。