吉林省省卷三年(2020-2022)中考数学真题分类汇编-03解答题基础题
展开吉林省省卷三年(2020-2022)中考数学真题分类汇编-03解答题基础题
一.整式的加减(共1小题)
1.(2022•吉林)下面是一道例题及其解答过程的一部分,其中A是关于m的多项式.请写出多项式A,并将该例题的解答过程补充完整.
例:先去括号,再合并同类项:m(A)﹣6(m+1). 解:m(A)﹣6(m+1) =m2+6m﹣6m﹣6 = . |
二.整式的混合运算—化简求值(共1小题)
2.(2020•吉林)先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中a=.
三.分式方程的应用(共1小题)
3.(2020•吉林)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.
四.反比例函数图象上点的坐标特征(共1小题)
4.(2020•吉林)如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=(x>0)的图象上(点B的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.
(1)求k的值.
(2)若D为OC中点,求四边形OABC的面积.
五.反比例函数与一次函数的交点问题(共1小题)
5.(2021•吉林)如图,在平面直角坐标系中,一次函数y=x﹣2的图象与y轴相交于点A,与反比例函数y=在第一象限内的图象相交于点B(m,2),过点B作BC⊥y轴于点C.
(1)求反比例函数的解析式;
(2)求△ABC的面积.
六.二次函数综合题(共1小题)
6.(2020•吉林)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+.以PQ,QM为边作矩形PQMN.
(1)求b的值.
(2)当点Q与点M重合时,求m的值.
(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.
(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.
七.全等三角形的判定(共1小题)
7.(2020•吉林)如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.
八.全等三角形的判定与性质(共2小题)
8.(2022•吉林)如图,AB=AC,∠BAD=∠CAD.求证:BD=CD.
9.(2021•吉林)如图,点D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE.
九.作图-轴对称变换(共1小题)
10.(2020•吉林)图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:
(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.
(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.
(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.
一十.用样本估计总体(共1小题)
11.(2020•吉林)2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.
表1:小莹抽取60名男生居家减压方式统计表(单位:人)
减压方式 | A | B | C | D | E |
人数 | 4 | 6 | 37 | 8 | 5 |
表2:小静随机抽取10名学生居家减压方式统计表(单位:人)
减压方式 | A | B | C | D | E |
人数 | 2 | 1 | 3 | 3 | 1 |
表3:小新随机抽取60名学生居家减压方式统计表(单位:人)
减压方式 | A | B | C | D | E |
人数 | 6 | 5 | 26 | 13 | 10 |
根据以上材料,回答下列问题:
(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.
(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.
一十一.列表法与树状图法(共1小题)
12.(2021•吉林)第一盒中有1个白球、1个黑球,第二盒中有1个白球,2个黑球.这些球除颜色外无其他差别,分别从每个盒中随机取出1个球,用画树状图或列表的方法,求取出的2个球都是白球的概率.
参考答案与试题解析
一.整式的加减(共1小题)
1.(2022•吉林)下面是一道例题及其解答过程的一部分,其中A是关于m的多项式.请写出多项式A,并将该例题的解答过程补充完整.
例:先去括号,再合并同类项:m(A)﹣6(m+1). 解:m(A)﹣6(m+1) =m2+6m﹣6m﹣6 = m2﹣6 . |
【解答】解:由题知,m(A)﹣6(m+1)
=m2+6m﹣6m﹣6
=m2﹣6,
∵m2+6m=m(m+6),
∴A为:m+6,
故答案为:m2﹣6.
二.整式的混合运算—化简求值(共1小题)
2.(2020•吉林)先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中a=.
【解答】解:原式=a2+2a+1+a﹣a2﹣1
=3a.
当a=时,
原式=3.
三.分式方程的应用(共1小题)
3.(2020•吉林)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.
【解答】解:设乙每小时做x个零件,甲每小时做(x+6)个零件,
根据题意得:=,
解得:x=12,
经检验,x=12是原方程的解,且符合题意,
答:乙每小时做12个零件.
四.反比例函数图象上点的坐标特征(共1小题)
4.(2020•吉林)如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=(x>0)的图象上(点B的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.
(1)求k的值.
(2)若D为OC中点,求四边形OABC的面积.
【解答】解:(1)将点A的坐标为(2,4)代入y=(x>0),
可得k=xy=2×4=8,
∴k的值为8;
(2)∵k的值为8,
∴函数y=的解析式为y=,
∵D为OC中点,OD=2,
∴OC=4,
∴点B的横坐标为4,将x=4代入y=,
可得y=2,
∴点B的坐标为(4,2),
∴S四边形OABC=S△AOD+S四边形ABCD==10.
五.反比例函数与一次函数的交点问题(共1小题)
5.(2021•吉林)如图,在平面直角坐标系中,一次函数y=x﹣2的图象与y轴相交于点A,与反比例函数y=在第一象限内的图象相交于点B(m,2),过点B作BC⊥y轴于点C.
(1)求反比例函数的解析式;
(2)求△ABC的面积.
【解答】解:(1)∵B点是直线与反比例函数交点,
∴B点坐标满足一次函数解析式,
∴,
∴m=3,
∴B(3,2),
∴k=6,
∴反比例函数的解析式为;
(2)∵BC⊥y轴,
∴C(0,2),BC∥x轴,
∴BC=3,
令x=0,则y=,
∴A(0,﹣2),
∴AC=4,
∴,
∴△ABC的面积为6.
六.二次函数综合题(共1小题)
6.(2020•吉林)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+.以PQ,QM为边作矩形PQMN.
(1)求b的值.
(2)当点Q与点M重合时,求m的值.
(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.
(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.
【解答】解:(1)把点A(3,0)代入y=﹣x2+bx+,得到0=﹣+3b+,
解得b=1.
(2)∵抛物线的解析式为y=﹣x2+x+,
∴P(m,﹣m2+m+),
∵M,Q重合,
∴﹣m+=﹣m2+m+,
解得m=0或4.
(3)y=﹣x2+x+=﹣(x﹣1)2+2,
∴抛物线的顶点坐标为(1,2),
由题意PQ=MQ,且抛物线的顶点在该正方形内部,
∴3﹣m=﹣m+﹣(﹣m2+m+)且﹣m+>2,得m<﹣
解得m=1﹣或1+(不合题意舍弃),
∴m=1﹣.
(4)当点P在直线l的左边,点M在点Q下方时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,
则有﹣m+<﹣m2+m+,
∴m2﹣4m<0,
解得0<m<4,
观察图象可知.当0<m<3时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,如图4﹣1中,
当3<m<4时,抛物线不在矩形PQMN内部,不符合题意,
当m>4时,点M在点Q的上方,也满足条件,如图4﹣2中,
综上所述,满足条件的m的值为0<m<3或m>4.
七.全等三角形的判定(共1小题)
7.(2020•吉林)如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.
【解答】证明:∵DE∥AC,
∴∠EDB=∠A.
在△DEB与△ABC中,
,
∴△DEB≌△ABC(SAS).
八.全等三角形的判定与性质(共2小题)
8.(2022•吉林)如图,AB=AC,∠BAD=∠CAD.求证:BD=CD.
【解答】证明:在△ABD与△ACD中,
,
∴△ABD≌△ACD(SAS),
∴BD=CD.
9.(2021•吉林)如图,点D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE.
【解答】证明:在△ABE与△ACD中,
,
∴△ACD≌△ABE(ASA),
∴AD=AE(全等三角形的对应边相等).
九.作图-轴对称变换(共1小题)
10.(2020•吉林)图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:
(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.
(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.
(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.
【解答】解:(1)如图①,MN即为所求;
(2)如图②,PQ即为所求;
(3)如图③,△DEF即为所求.(答案不唯一).
一十.用样本估计总体(共1小题)
11.(2020•吉林)2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.
表1:小莹抽取60名男生居家减压方式统计表(单位:人)
减压方式 | A | B | C | D | E |
人数 | 4 | 6 | 37 | 8 | 5 |
表2:小静随机抽取10名学生居家减压方式统计表(单位:人)
减压方式 | A | B | C | D | E |
人数 | 2 | 1 | 3 | 3 | 1 |
表3:小新随机抽取60名学生居家减压方式统计表(单位:人)
减压方式 | A | B | C | D | E |
人数 | 6 | 5 | 26 | 13 | 10 |
根据以上材料,回答下列问题:
(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.
(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.
【解答】解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.
(2)600×=260(人),
答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.
一十一.列表法与树状图法(共1小题)
12.(2021•吉林)第一盒中有1个白球、1个黑球,第二盒中有1个白球,2个黑球.这些球除颜色外无其他差别,分别从每个盒中随机取出1个球,用画树状图或列表的方法,求取出的2个球都是白球的概率.
【解答】解:用列表法表示所有可能出现的结果情况如下:
共有6种等可能出现的结果情况,其中两球都是白球的有1种,
所以取出的2个球都是白球的概率为.
答:取出的2个球都是白球的概率为.
内蒙古赤峰市三年(2020-2022)中考数学真题分类汇编-03解答题基础题: 这是一份内蒙古赤峰市三年(2020-2022)中考数学真题分类汇编-03解答题基础题,共15页。试卷主要包含了﹣1+4cs45°,先化简,再求值,阅读下列材料等内容,欢迎下载使用。
吉林省省卷三年(2020-2022)中考数学真题分类汇编-01选择题: 这是一份吉林省省卷三年(2020-2022)中考数学真题分类汇编-01选择题,共10页。
吉林省省卷三年(2020-2022)中考数学真题分类汇编-04解答题提升题: 这是一份吉林省省卷三年(2020-2022)中考数学真题分类汇编-04解答题提升题,共44页。试卷主要包含了,其中x=,刘芳和李婷进行跳绳比赛,之间的关系如图所示,随之变化等内容,欢迎下载使用。