2022年广东省深圳市龙岗区布吉中学中考一模数学试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在中,边上的高是( )
A. B. C. D.
2.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是( )
A.有两个不相等实数根 B.有两个相等实数根
C.有且只有一个实数根 D.没有实数根
3.2017年“智慧天津”建设成效显著,互联网出口带宽达到17200吉比特每秒.将17200用科学记数法表示应为( )
A.172×102 B.17.2×103 C.1.72×104 D.0.172×105
4.如图所示,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BD两点间的距离为( )
A.2 B. C. D.
5.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为( )
A.﹣=100 B.﹣=100
C.﹣=100 D.﹣=100
6.若关于x、y的方程组有实数解,则实数k的取值范围是( )
A.k>4 B.k<4 C.k≤4 D.k≥4
7.若矩形的长和宽是方程x2-7x+12=0的两根,则矩形的对角线长度为( )
A.5 B.7 C.8 D.10
8.如图,从圆外一点引圆的两条切线,,切点分别为,,如果, ,那么弦AB的长是( )
A. B. C. D.
9.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )
A. B. C. D.
10.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
二、填空题(共7小题,每小题3分,满分21分)
11.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三点都在y=的图象上,则yl,y2,y3的大小关系是_____.(用“<”号填空)
12.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于__________.
13.安全问题大于天,为加大宣传力度,提高学生的安全意识,乐陵某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是_____.
14.某文化用品商店计划同时购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元.则A型号的计算器的每只进价为_____元.
15.已知⊙O1、⊙O2的半径分别为2和5,圆心距为d,若⊙O1与⊙O2相交,那么d的取值范围是_________.
16.如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(),D是AB边上的一点.将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么k的值是_______
17.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:
其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.
(1)求证:∠DAC=∠DCE;
(2)若AB=2,sin∠D=,求AE的长.
19.(5分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的点和东人工岛上的点间的距离约为5.6千米,点是与西人工岛相连的大桥上的一点,,,在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达点时观测两个人工岛,分别测得,与观光船航向的夹角,,求此时观光船到大桥段的距离的长(参考数据:,,,,,).
20.(8分)先化简,后求值:(1﹣)÷(),其中a=1.
21.(10分)学校决定在学生中开设:A、实心球;B、立定跳远;C、跳绳;D、跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图,请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整.
(3)若调查到喜欢“跳绳”的5名学生中有2名男生,3名女生,现从这5名学生中任意抽取2名学生,请用画树状图或列表法求出刚好抽到不同性别学生的概率.
22.(10分)分式化简:(a-)÷
23.(12分)(1)问题发现:
如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为 ;
(2)深入探究:
如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
(3)拓展延伸:
如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=,试求EF的长.
24.(14分)为响应“植树造林、造福后人”的号召,某班组织部分同学义务植树棵,由于同学们的积极参与,实际参加的人数比原计划增加了,结果每人比原计划少栽了棵,问实际有多少人参加了这次植树活动?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据三角形的高线的定义解答.
【详解】
根据高的定义,AF为△ABC中BC边上的高.
故选D.
【点睛】
本题考查了三角形的高的定义,熟记概念是解题的关键.
2、A
【解析】
【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.
【详解】∵a=1,b=1,c=﹣3,
∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,
∴方程x2+x﹣3=0有两个不相等的实数根,
故选A.
【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
3、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将17200用科学记数法表示为1.72×1.
故选C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4、C
【解析】
解:连接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故选C.
点睛:本题考查了勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.
5、B
【解析】
【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.
【详解】科普类图书平均每本的价格是x元,则可列方程为:
﹣=100,
故选B.
【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
6、C
【解析】
利用根与系数的关系可以构造一个两根分别是x,y的一元二次方程,方程有实数根,用根的判别式≥0来确定k的取值范围.
【详解】
解:∵xy=k,x+y=4,
∴根据根与系数的关系可以构造一个关于m的新方程,设x,y为方程的实数根.
解不等式得
故选:C.
【点睛】
本题考查了一元二次方程的根的判别式的应用和根与系数的关系.解题的关键是了解方程组有实数根的意义.
7、A
【解析】
解:设矩形的长和宽分别为a、b,则a+b=7,ab=12,所以矩形的对角线长====1.故选A.
8、C
【解析】
先利用切线长定理得到,再利用可判断为等边三角形,然后根据等边三角形的性质求解.
【详解】
解:,PB为的切线,
,
,
为等边三角形,
.
故选C.
【点睛】
本题考查切线长定理,掌握切线长定理是解题的关键.
9、A
【解析】
设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.
【详解】
设索长为x尺,竿子长为y尺,
根据题意得:.
故选A.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
10、B
【解析】
根据抛物线的对称轴即可判定①;观察图象可得,当x=-3时,y<0,由此即可判定②;观察图象可得,当x=1时,y>0,由此即可判定③;观察图象可得,当x>2时,的值随值的增大而增大,即可判定④.
【详解】
由抛物线的对称轴为x=2可得=2,即4a+b=0,①正确;
观察图象可得,当x=-3时,y<0,即9a-3b+c<0,所以,②错误;
观察图象可得,当x=1时,y>0,即a+b+c>0,③正确;
观察图象可得,当x>2时,的值随值的增大而增大,④错误.
综上,正确的结论有2个.
故选B.
【点睛】
本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
二、填空题(共7小题,每小题3分,满分21分)
11、y3<y1<y1
【解析】
根据反比例函数的性质k<0时,在每个象限,y随x的增大而增大,进行比较即可.
【详解】
解:k=-1<0,
∴在每个象限,y随x的增大而增大,
∵-3<-1<0,
∴0<y1<y1.
又∵1>0
∴y3<0
∴y3<y1<y1
故答案为:y3<y1<y1
【点睛】
本题考查的是反比例函数的性质,理解性质:当k>0时,在每个象限,y随x的增大而减小,k<0时,在每个象限,y随x的增大而增大是解题的关键.
12、3
【解析】
试题解析:平移CD到C′D′交AB于O′,如图所示,
则∠BO′D′=∠BOD,
∴tan∠BOD=tan∠BO′D′,
设每个小正方形的边长为a,
则O′B=,O′D′=,BD′=3a,
作BE⊥O′D′于点E,
则BE=,
∴O′E=,
∴tanBO′E=,
∴tan∠BOD=3.
考点:解直角三角形.
13、
【解析】
根据事件的描述可得到描述正确的有①②③⑥,即可得到答案.
【详解】
∵共有6张纸条,其中正确的有①互相关心;②互相提醒;③不要相互嬉水;⑥选择有人看护的游泳池,共4张,
∴抽到内容描述正确的纸条的概率是,
故答案为:.
【点睛】
此题考查简单事件的概率的计算,正确掌握事件的概率计算公式是解题的关键.
14、40
【解析】
设A型号的计算器的每只进价为x元,B型号的计算器的每只进价为y元,根据“若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.
【详解】
设A型号的计算器的每只进价为x元,B型号的计算器的每只进价为y元,
根据题意得:,
解得:.
答:A型号的计算器的每只进价为40元.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
15、3
若两圆的半径分别为R和r,且R≥r,圆心距为d:相交,则R-r
∵⊙O1和⊙O2的半径分别为2和5,且两圆的位置关系为相交,
∴圆心距O1O2的取值范围为5-2
本题考查的知识点是圆与圆的位置关系,解题的关键是熟练的掌握圆与圆的位置关系.
16、-12
【解析】
过E点作EF⊥OC于F,如图所示:
由条件可知:OE=OA=5,,
所以EF=3,OF=4,
则E点坐标为(-4,3)
设反比例函数的解析式是y=,
则有k=-4×3=-12.
故答案是:-12.
17、
【解析】
分析:根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论.
详解:∵平均数是12,
∴这组数据的和=12×7=84,
∴被墨汁覆盖三天的数的和=84−4×12=36,
∵这组数据唯一众数是13,
∴被墨汁覆盖的三个数为:10,13,13,
故答案为
点睛:考查方差,算术平均数,众数,根据这组数据唯一众数是13,得到被墨汁覆盖的三个数为:10,13,13是解题的关键.
三、解答题(共7小题,满分69分)
18、(1)证明见解析;(2).
【解析】
(1)由切线的性质可知∠DAB=90°,由直角所对的圆周为90°可知∠ACB=90°,根据同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性质可知∠B=∠OCB,由对顶角的性质可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;
(2)题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE•AD,故此可求得DE=,于是可求得AE=.
【详解】
解:(1)∵AD是圆O的切线,∴∠DAB=90°.
∵AB是圆O的直径,∴∠ACB=90°.
∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.
∵OC=OB,∴∠B=∠OCB.
又∵∠DCE=∠OCB,∴∠DAC=∠DCE.
(2)∵AB=2,∴AO=1.
∵sin∠D=,∴OD=3,DC=2.
在Rt△DAO中,由勾股定理得AD==.
∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴,即.
解得:DE=,∴AE=AD﹣DE=.
19、5.6千米
【解析】
设PD的长为x千米,DA的长为y千米,在Rt△PAD中利用正切的定义得到tan18°=,即y=0.33x,同样在Rt△PDB中得到y+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可.
【详解】
设PD的长为x千米,DA的长为y千米,
在Rt△PAD中,tan∠DPA=,
即tan18°=,
∴y=0.33x,
在Rt△PDB中,tan∠DPB=,
即tan53°=,
∴y+5.6=1.33x,
∴0.33x+5.6=1.33x,解得x=5.6,
答:此时观光船到大桥AC段的距离PD的长为5.6千米.
【点睛】
本题考查了解直角三角形的应用:根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.
20、,2.
【解析】
先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.
【详解】
解:原式=
,
当a=1时,
原式==2.
【点睛】
本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
21、(1)150;(2)详见解析;(3).
【解析】
(1)用A类人数除以它所占的百分比得到调查的总人数;
(2)用总人数分别减去A、C、D得到B类人数,再计算出它所占的百分比,然后补全两个统计图;
(3)画树状图展示所有20种等可能的结果数,再找出刚好抽到不同性别学生的结果数,然后利用概率公式求解.
【详解】
解:(1)15÷10%=150,
所以共调查了150名学生;
(2)喜欢“立定跳远”学生的人数为150﹣15﹣60﹣30=45,
喜欢“立定跳远”的学生所占百分比为1﹣20%﹣40%﹣10%=30%,
两个统计图补充为:
(3)画树状图为:
共有20种等可能的结果数,其中刚好抽到不同性别学生的结果数为12,
所以刚好抽到不同性别学生的概率
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
22、a-b
【解析】
利用分式的基本性质化简即可.
【详解】
===.
【点睛】
此题考查了分式的化简,用到的知识点是分式的基本性质、完全平方公式.
23、(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3);
【解析】
(1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.
(2)根据△ABC,△AMN为等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根据相似三角形的性质得到,利用等腰三角形的性质得到∠BAC=∠MAN,根据相似三角形的性质即可得到结论;
(3)如图3,连接AB,AN,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出,得到BM=2,CM=8,再根据勾股定理即可得到答案.
【详解】
(1)NC∥AB,理由如下:
∵△ABC与△MN是等边三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAM=∠CAN,
在△ABM与△ACN中,
,
∴△ABM≌△ACN(SAS),
∴∠B=∠ACN=60°,
∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,
∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,
∴CN∥AB;
(2)∠ABC=∠ACN,理由如下:
∵=1且∠ABC=∠AMN,
∴△ABC~△AMN
∴,
∵AB=BC,
∴∠BAC=(180°﹣∠ABC),
∵AM=MN
∴∠MAN=(180°﹣∠AMN),
∵∠ABC=∠AMN,
∴∠BAC=∠MAN,
∴∠BAM=∠CAN,
∴△ABM~△ACN,
∴∠ABC=∠ACN;
(3)如图3,连接AB,AN,
∵四边形ADBC,AMEF为正方形,
∴∠ABC=∠BAC=45°,∠MAN=45°,
∴∠BAC﹣∠MAC=∠MAN﹣∠MAC
即∠BAM=∠CAN,
∵,
∴,
∴△ABM~△ACN
∴,
∴=cos45°=,
∴,
∴BM=2,
∴CM=BC﹣BM=8,
在Rt△AMC,
AM=,
∴EF=AM=2.
【点睛】
本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.
24、人
【解析】
解:设原计划有x人参加了这次植树活动
依题意得:
解得 x=30人
经检验x=30是原方程式的根
实际参加了这次植树活动1.5x=45人
答实际有45人参加了这次植树活动.
2023年广东省深圳市龙岗区鹏达学校中考数学一模试卷(含解析): 这是一份2023年广东省深圳市龙岗区鹏达学校中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广东省深圳市龙岗区中考数学二模试卷(含解析): 这是一份2023年广东省深圳市龙岗区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广东省深圳市龙岗区坪地中学中考数学一模试卷(含解析): 这是一份2023年广东省深圳市龙岗区坪地中学中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。