广东省深圳市龙岗区中考数学一模试卷(解析版)
展开
广东省深圳市龙岗区中考数学一模试卷
一、选择题(本大题10小题,每小题3分,共30分)
1.4的算术平方根是( )
A.﹣4 B.4 C.﹣2 D.2
2.下列运算正确的是( )
A.a2+a3=a5 B.a2•a3=a5 C.(a2)3=a5 D.a10÷a2=a5
3.下列图形中,既是轴对称又是中心对称图形的是( )
A. B. C. D.
4.某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为( )
A.6,6 B.7,6 C.7,8 D.6,8
5.据中新社北京2015年1月8日电,2014年中国粮食总产量达到586 400 000吨,用科学记数法表示为( )
A.5.864×107吨 B.5.864×108吨 C.5.864×109吨 D.5.864×1010吨
6.若x>y,则下列式子中错误的是( )
A.x﹣3>y﹣3 B.x+3>y+3 C.﹣3x>﹣3y D.>
7.如图,在▱ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,则△BOC的周长是( )
A.45cm B.59cm C.62cm D.90cm
8.下列方程没有实数根的是( )
A.x2+4x=10 B.3x2+8x﹣3=0 C.x2﹣2x+3=0 D.(x﹣2)(x﹣3)=12
9.一个多边形的内角和是720°,这个多边形的边数是( )
A.4 B.5 C.6 D.7
10.二次函数y=ax2+b(b>0)与反比例函数y=在同一坐标系中的图象可能是( )
A. B. C. D.
11.已知点A(x1,y1),(x2,y2)是反比例函数y=图象上的点,若x1>0>x2,则一定成立的是( )
A.y1>y2>0 B.y1>0>y2 C.0>y1>y2 D.y2>0>y1
12.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为( )
A.2,22.5° B.3,30° C.3,22.5° D.2,30°
二、填空题(本大题6小题,每小题4分,共24分)
13.不等式组的解集是 .
14.已知a2﹣2a﹣1=0,则= .
15.在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD= .
16.如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1= , = .
二、解答题(本大题3小题,每小题6分,共18分)
17.计算:|﹣3|+•tan30°﹣(2015﹣π)0﹣()﹣1.
18.解分式方程: +=1.
19.如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(n,3)两点.
(1)求一次函数的解析式;
(2)根据图象直接写出时x的取值范围.
20.李老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)李老师一共调查了多少名同学?
(2)C类女生有3名,D类男生有1名,将图1条形统计图补充完整;
(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
21.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.
(1)求第一次每支铅笔的进价是多少元?
(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?
22. 如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,AD交⊙O于点E.
(1)求证:AC平分∠DAB;
(2)若∠B=60°,CD=2,求AE的长.
23.如图,抛物线y=ax2+bx经过点A(4,0),B(2,2).连接OB,AB.
(1)求该抛物线的解析式;
(2)求证:△OAB是等腰直角三角形;
(3)将△OAB绕点O按顺时针方向旋转135°得到△OA′B′,写出△OA′B′的边A′B′的中点P的坐标.试判断点P是否在此抛物线上,并说明理由.
24.已知:如图,二次函数y=ax2+4的图象与x轴交于点A和点B(点A在点B 的左侧),与y轴交于点C,且cos∠CAO=.
(1)求二次函数的解析式;
(2)若以点O为圆心的圆与直线AC相切于点D,求点D的坐标;
(3)在(2)的条件下,抛物线上是否存在点P使得以P、A、D、O为顶点的四边形是直角梯形?若存在,请求出点P坐标;若不存在,请说明理由.
广东省深圳市龙岗区中考数学一模试卷
参考答案与试题解析
一、选择题(本大题10小题,每小题3分,共30分)
1.4的算术平方根是( )
A.﹣4 B.4 C.﹣2 D.2
【考点】算术平方根.
【分析】根据算术平方根的定义解答即可.
【解答】解:∵22=4,
∴4的算术平方根是2,
即=2.
故选D.
【点评】本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.
2.下列运算正确的是( )
A.a2+a3=a5 B.a2•a3=a5 C.(a2)3=a5 D.a10÷a2=a5
【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.
【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.
【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;
B、a2•a3=a5,正确;
C、应为(a2)3=a2×3=a6,故本选项错误;
D、应为a10÷a2=a10﹣2=a8,故本选项错误.
故选B.
【点评】本题考查了合并同类项,同底数幂的乘法,幂的乘方,同底数幂的除法,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的一定不能合并.
3.下列图形中,既是轴对称又是中心对称图形的是( )
A. B. C. D.
【考点】中心对称图形;轴对称图形.
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A、是轴对称图形,不是中心对称图形.故错误;
B、是轴对称图形,也是中心对称图形.故正确;
C、不是轴对称图形,是中心对称图形.故错误;
D、不是轴对称图形,也不是中心对称图形.故错误.
故选B.
【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
4.某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为( )
A.6,6 B.7,6 C.7,8 D.6,8
【考点】中位数;众数.
【分析】首先把所给数据按从小到大的顺序重新排序,然后利用中位数和众数的定义就可以求出结果.
【解答】解:把已知数据按从小到大的顺序排序后为5元,6元,6元,7元,8元,9元,10元,
∴中位数为7
∵6这个数据出现次数最多,
∴众数为6.
故选B.
【点评】本题结合众数与中位数考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.众数只要找次数最多的即可.
5.据中新社北京2015年1月8日电,2014年中国粮食总产量达到586 400 000吨,用科学记数法表示为( )
A.5.864×107吨 B.5.864×108吨 C.5.864×109吨 D.5.864×1010吨
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:将586 400 000用科学记数法表示为:5.864×108.
故选:B.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
6.若x>y,则下列式子中错误的是( )
A.x﹣3>y﹣3 B.x+3>y+3 C.﹣3x>﹣3y D.>
【考点】不等式的性质.
【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.
【解答】解:A、不等式的两边都减3,不等号的方向不变,故A正确;
B、不等式的两边都加3,不等号方向不变,故B正确;
C、不等式的两边都乘﹣3,不等号的方向改变,故C错误;
D、不等式的两边都除以3,不等号的方向改变,故D正确;
故选:C.
【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.
7.如图,在▱ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,则△BOC的周长是( )
A.45cm B.59cm C.62cm D.90cm
【考点】平行四边形的性质.
【分析】利用平行四边形的对边相等对角线互相平分进而得出即可.
【解答】解:∵在▱ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,
∴AO=CO=12cm,BO=19cm,AD=BC=28cm,
∴△BOC的周长是:BO+CO+BC=12+19+28=59(cm).
故选:B.
【点评】此题主要考查了平行四边形的性质,得出CO,BO的长是解题关键.
8.下列方程没有实数根的是( )
A.x2+4x=10 B.3x2+8x﹣3=0 C.x2﹣2x+3=0 D.(x﹣2)(x﹣3)=12
【考点】根的判别式.
【专题】判别式法.
【分析】分别计算出判别式△=b2﹣4ac的值,然后根据△的意义分别判断即可.
【解答】解:A、方程变形为:x2+4x﹣10=0,△=42﹣4×1×(﹣10)=56>0,所以方程有两个不相等的实数根,故A选项不符合题意;
B、△=82﹣4×3×(﹣3)=100>0,所以方程有两个不相等的实数根,故B选项不符合题意;
C、△=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根,故C选项符合题意;
D、方程变形为:x2﹣5x﹣6=0,△=52﹣4×1×(﹣6)=49>0,所以方程有两个不相等的实数根,故D选项不符合题意.
故选:C.
【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
9.一个多边形的内角和是720°,这个多边形的边数是( )
A.4 B.5 C.6 D.7
【考点】多边形内角与外角.
【分析】根据内角和定理180°•(n﹣2)即可求得.
【解答】解:∵多边形的内角和公式为(n﹣2)•180°,
∴(n﹣2)×180°=720°,
解得n=6,
∴这个多边形的边数是6.
故选C.
【点评】本题主要考查了多边形的内角和定理即180°•(n﹣2),难度适中.
10.二次函数y=ax2+b(b>0)与反比例函数y=在同一坐标系中的图象可能是( )
A. B. C. D.
【考点】二次函数的图象;反比例函数的图象.
【专题】数形结合.
【分析】先根据各选项中反比例函数图象的位置确定a的范围,再根据a的范围对抛物线的大致位置进行判断,从而确定该选项是否正确.
【解答】解:A、对于反比例函数y=经过第二、四象限,则a<0,所以抛物线开口向下,故A选项错误;
B、对于反比例函数y=经过第一、三象限,则a>0,所以抛物线开口向上,b>0,抛物线与y轴的交点在x轴上方,故B选项正确;
C、对于反比例函数y=经过第一、三象限,则a>0,所以抛物线开口向上,故C选项错误;
D、对于反比例函数y=经过第一、三象限,则a>0,所以抛物线开口向上,而b>0,抛物线与y轴的交点在x轴上方,故D选项错误.
故选:B.
【点评】本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了反比例函数的图象.
11.已知点A(x1,y1),(x2,y2)是反比例函数y=图象上的点,若x1>0>x2,则一定成立的是( )
A.y1>y2>0 B.y1>0>y2 C.0>y1>y2 D.y2>0>y1
【考点】反比例函数的性质.
【分析】反比例函数y=(k≠0,k为常数)中,当k>0时,双曲线在第一,三象限,在每个象限内,y随x的增大而减小判定则可.
【解答】解:∵k=2>0,
∴函数为减函数,
又∵x1>0>x2,
∴A,B两点不在同一象限内,
∴y2<0<y1;
故选B.
【点评】本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,同学们应重点掌握.
12.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为( )
A.2,22.5° B.3,30° C.3,22.5° D.2,30°
【考点】切线的性质;等腰直角三角形.
【专题】压轴题.
【分析】首先连接AO,由切线的性质,易得OD⊥AB,即可得OD是△ABC的中位线,继而求得OD的长;根据圆周角定理即可求出∠MND的度数.
【解答】解:连接OA,
∵AB与⊙O相切,
∴OD⊥AB,
∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,
∴AO⊥BC,
∴OD∥AC,
∵O为BC的中点,
∴OD=AC=2;
∵∠DOB=45°,
∴∠MND=∠DOB=22.5°,
故选A.
【点评】此题考查了切线的性质、圆周角定理、切线长定理以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
二、填空题(本大题6小题,每小题4分,共24分)
13.不等式组的解集是 ﹣≤x<4 .
【考点】解一元一次不等式组.
【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.
【解答】解:,
解①得:x<4,
解②得:x≥﹣.
则不等式组的解集是:﹣≤x<4.
【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.
14.已知a2﹣2a﹣1=0,则= 2 .
【考点】分式的化简求值.
【分析】先根据a2﹣2a﹣1=0得出a2﹣1=2a,再代入所求代数式进行计算即可.
【解答】解:∵a2﹣2a﹣1=0,
∴a2﹣1=2a,
∴原式==2.
故答案为:2.
【点评】本题考查的是分式的化简求值,在解答此类问题时要注意约分的灵活运用.
15.在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD= 3 .
【考点】角平分线的性质;勾股定理.
【分析】过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.
【解答】解:如图,过点D作DE⊥AB于E,
∵∠C=90°,AC=6,BC=8,
∴AB===10,
∵AD平分∠CAB,
∴CD=DE,
∴S△ABC=AC•CD+AB•DE=AC•BC,
即×6•CD+×10•CD=×6×8,
解得CD=3.
故答案为:3.
【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并利用三角形的面积列出方程是解题的关键.
16.如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1= , = .
【考点】相似三角形的判定与性质;三角形的面积;勾股定理.
【专题】压轴题;规律型.
【分析】由于在Rt△ABC中,AC=3,BC=4,所以AB=5,利用等面积法,可以求出CA1=;由于△BA5C4∽△BCA,根据相似三角形的性质,即,所以==.
【解答】解:在Rt△ABC中,AC=3,BC=4,
∴AB=,
又因为CA1⊥AB,
∴AB•CA1=AC•BC,
即CA1===.
∵C4A5⊥AB,
∴△BA5C4∽△BCA,
∴,
∴==.
所以应填和.
【点评】本题重点考查了相似三角形的判定和性质,其中相似三角形的性质“相似三角形的对应边上高的比等于相似比”是解题的关键.
二、解答题(本大题3小题,每小题6分,共18分)
17.计算:|﹣3|+•tan30°﹣(2015﹣π)0﹣()﹣1.
【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.
【分析】利用特殊角的三角函数值以及负整数指数幂的性质以及零指数幂的性质分别化简求出即可.
【解答】解:|﹣3|+•tan30°﹣(2015﹣π)0﹣()﹣1
=3+×﹣1﹣3
=0.
【点评】此题主要考查了实数运算,正确掌握相关性质化简各数是解题关键.
18.解分式方程: +=1.
【考点】解分式方程.
【专题】计算题.
【分析】本题考查解分式方程的能力,因为3﹣x=﹣(x﹣3),所以可得方程最简公分母为(x﹣3),方程两边同乘(x﹣3)将分式方程转化为整式方程求解,要注意检验.
【解答】解:方程两边同乘(x﹣3),
得:2﹣x﹣1=x﹣3,
整理解得:x=2,
经检验:x=2是原方程的解.
【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.
(2)解分式方程一定注意要验根.
(3)方程有常数项的不要漏乘常数项.
19.如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(n,3)两点.
(1)求一次函数的解析式;
(2)根据图象直接写出时x的取值范围.
【考点】反比例函数与一次函数的交点问题.
【分析】(1)先把(m,6)、B(n,3)代入反比例函数,可求m、n的值,即可得A、B的坐标,然后把AB两点坐标代入一次函数,可得关于k、b的二元一次方程组,解可得k、b的值,进而可得一次函数的解析式;
(2)根据图象可知当1<x<2时,一次函数y的值大于反比例函数y的值.
【解答】解:(1)∵点A(m,6)、B(n,3)在函数y=图象上,
∴m=1,n=2,
∴A点坐标是(1,6),B点坐标是(2,3),
把(1,6)、(2,3)代入一次函数y=kx+b中,得
,
解得,
∴一次函数的解析式为y=﹣3x+9;
(2)由图象知:1<x<2.
【点评】本题考查了一次函数与反比例函数交点的问题,解题的关键是先求出m、n的值,并注意待定系数法的使用.
20.李老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)李老师一共调查了多少名同学?
(2)C类女生有3名,D类男生有1名,将图1条形统计图补充完整;
(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
【考点】条形统计图;扇形统计图;列表法与树状图法.
【分析】(1)根据B类的人数,男女共10人,所占的百分比是50%,即可求得总人数;
(2)根据百分比的意义求得C类的人数,进而求得女生的人数,同法求得D类中男生的人数,即可补全直方图;
(3)利用树状图法表示出出现的所有情况,进而利用概率公式求解.
【解答】解:(1)(6+4)÷50%=20.所以李老师一共调查了20名学生.
(2)C类女生有3名,D类男生有1名;补充条形统计图
.
(3)由题意画树形图如下:
从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选
两位同学恰好是一位男同学和一位女同学的结果共有3种.
所以P(所选两位同学恰好是一位男同学和一位女同学)==.
【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
21.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.
(1)求第一次每支铅笔的进价是多少元?
(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?
【考点】分式方程的应用;一元一次不等式组的应用.
【专题】计算题.
【分析】(1)设第一次每支铅笔进价为x元,则第二次每支铅笔进价为x元,根据题意可列出分式方程解答;
(2)设售价为y元,求出利润表达式,然后列不等式解答.
【解答】解:(1)设第一次每支铅笔进价为x元,
根据题意列方程得,﹣=30,
解得x=4,
经检验:x=4是原分式方程的解.
答:第一次每支铅笔的进价为4元.
(2)设售价为y元,第一次每支铅笔的进价为4元,则第二次每支铅笔的进价为4×=5元
根据题意列不等式为:
×(y﹣4)+×(y﹣5)≥420,
解得y≥6.
答:每支售价至少是6元.
【点评】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键.最后不要忘记检验.
22. 如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,AD交⊙O于点E.
(1)求证:AC平分∠DAB;
(2)若∠B=60°,CD=2,求AE的长.
【考点】切线的性质;圆周角定理;相似三角形的判定与性质;解直角三角形.
【专题】几何综合题.
【分析】(1)连接OC,由CD为圆O的切线,根据切线的性质得到OC垂直于CD,由AD垂直于CD,可得出OC平行于AD,根据两直线平行内错角相等可得出∠1=∠2,再由OA=OC,利用等边对等角得到∠2=∠3,等量代换可得出∠1=∠3,即AC为角平分线;
(2)法1:由AB为圆O的直径,根据直径所对的圆周角为直角可得出∠ACB为直角,在直角三角形ABC中,由∠B的度数求出∠3的度数为30°,可得出∠1的度数为30°,在直角三角形ACD中,根据30°角所对的直角边等于斜边的一半,由CD的长求出AC的长,在直角三角形ABC中,根据cos30°及AC的长,利用锐角三角函数定义求出AB的长,进而得出半径OE的长,由∠EAO为60°,及OE=OA,得到三角形AEO为等边三角形,可得出AE=OA=OE,即可确定出AE的长;
法2:连接EC,由AB为圆O的直径,根据直径所对的圆周角为直角可得出∠ACB为直角,在直角三角形ABC中,由∠B的度数求出∠3的度数为30°,可得出∠1的度数为30°,在直角三角形ADC中,由CD及tan30°,利用锐角三角函数定义求出AD的长,由∠DEC为圆内接四边形ABCE的外角,利用圆内接四边形的外角等于它的内对角,得到∠DEC=∠B,由∠B的度数求出∠DEC的度数为60°,在直角三角形DEC中,由tan60°及DC的长,求出DE的长,最后由AD﹣ED即可求出AE的长.
【解答】(1)证明:如图1,连接OC,
∵CD为⊙O的切线,
∴OC⊥CD,
∴∠OCD=90°,
∵AD⊥CD,
∴∠ADC=90°,
∴∠OCD+∠ADC=180°,
∴AD∥OC,
∴∠1=∠2,
∵OA=OC,
∴∠2=∠3,
∴∠1=∠3,
则AC平分∠DAB;
(2)解:
法1:如图2,连接OE,
∵AB是⊙O的直径,
∴∠ACB=90°,
又∵∠B=60°,
∴∠1=∠3=30°,
在Rt△ACD中,CD=2,∠1=30°,
∴AC=2CD=4,
在Rt△ABC中,AC=4,∠CAB=30°,
∴AB===8,
∵∠EAO=2∠3=60°,OA=OE,
∴△AOE是等边三角形,
∴AE=OA=AB=4;
法2:如图3,连接CE,
∵AB为⊙O的直径,
∴∠ACB=90°,
又∠B=60°,
∴∠1=∠3=30°,
在Rt△ACD中,CD=2,
∴AD===6,
∵四边形ABCE是⊙O的内接四边形,
∴∠B+∠AEC=180°,
又∵∠DEC=∠B=60°,
在Rt△CDE中,CD=2,
∴DE===2,
∴AE=AD﹣DE=4.
【点评】此题考查了切线的性质,平行线的性质,等边三角形的判定与性质,锐角三角函数定义,圆内接四边形的性质,以及圆周角定理,利用了转化及数形结合的思想,遇到直线与圆相切,常常连接圆心与切点,利用切线的性质得到垂直,利用直角三角形的性质来解决问题.
23.如图,抛物线y=ax2+bx经过点A(4,0),B(2,2).连接OB,AB.
(1)求该抛物线的解析式;
(2)求证:△OAB是等腰直角三角形;
(3)将△OAB绕点O按顺时针方向旋转135°得到△OA′B′,写出△OA′B′的边A′B′的中点P的坐标.试判断点P是否在此抛物线上,并说明理由.
【考点】二次函数综合题.
【专题】综合题.
【分析】(1)将A、B的坐标代入抛物线的解析式中,通过联立方程组即可求出抛物线的解析式;
(2)过B作BC⊥x轴于C,根据A、B的坐标易求得OC=BC=AC=2,由此可证得∠BOC、∠BAC、∠OBC、∠ABC都是45°,即可证得△OAB是等腰直角三角形;
(3)当△OAB绕点O按顺时针方向旋转135°时,OB′正好落在y轴上,易求得OB、AB的长,即可得到OB′、A′B′的长,从而可得到A′、B′的坐标,进而可得到A′B′的中点P点的坐标,然后代入抛物线中进行验证即可.
【解答】解:(1)由题意得,
解得;
∴该抛物线的解析式为:y=﹣x2+2x;
(2)过点B作BC⊥x轴于点C,则OC=BC=AC=2;
∴∠BOC=∠OBC=∠BAC=∠ABC=45°;
∴∠OBA=90°,OB=AB;
∴△OAB是等腰直角三角形;
(3)∵△OAB是等腰直角三角形,OA=4,
∴OB=AB=2;
由题意得:点A′坐标为(﹣2,﹣2)
∴A′B′的中点P的坐标为(﹣,﹣2);
当x=﹣时,y=﹣×(﹣)2+2×(﹣)≠﹣2;
∴点P不在二次函数的图象上.
【点评】此题主要考查了二次函数解析式的确定、等腰直角三角形的判定、图形的旋转变化等知识.
24.已知:如图,二次函数y=ax2+4的图象与x轴交于点A和点B(点A在点B 的左侧),与y轴交于点C,且cos∠CAO=.
(1)求二次函数的解析式;
(2)若以点O为圆心的圆与直线AC相切于点D,求点D的坐标;
(3)在(2)的条件下,抛物线上是否存在点P使得以P、A、D、O为顶点的四边形是直角梯形?若存在,请求出点P坐标;若不存在,请说明理由.
【考点】二次函数综合题.
【专题】综合题.
【分析】(1)对于二次函数解析式,令x=0求出y的值确定出C坐标,根据题意得到三角形AOC为等腰直角三角形,确定出A坐标,代入二次函数解析式求出a的值,即可确定出解析式;
(2)连接OD,作DE∥y轴,交x轴于点E,DF∥x轴,交y轴于点F,如图1所示,由圆O与直线AC相切于点D,得到OD垂直于AC,由OA=OC,利用三线合一得到D为AC中点,进而求出DE与DF的长,确定出D坐标即可;
(3)分两种情况考虑:经过点A且与直线OD平行的直线的解析式为y=﹣x﹣4,与抛物线解析式联立求出P坐标;经过点O且与直线AC平行的直线的解析式为y=x,与抛物线解析式联立求出P坐标即可.
【解答】解:(1)∵二次函数y=ax2+4的图象与y轴交于点C,
∴点C的坐标为(0,4),
∵二次函数y=ax2+4的图象与x轴交于点A,cos∠CAO=,
∴∠CAO=45°,
∴OA=OC=4,
∴点A的坐标为(﹣4,0),
∴0=a(﹣4)2+4,
∴a=﹣,
∴这二次函数的解析式为y=﹣x2+4;
(2)连接OD,作DE∥y轴,交x轴于点E,DF∥x轴,交y轴于点F,如图1所示,
∵⊙O与直线AC相切于点D,
∴OD⊥AC,
∵OA=OC=4,
∴点D是AC的中点,
∴DE=OC=2,DF=OA=2,
∴点D的坐标为(﹣2,2);
(3)直线OD的解析式为y=﹣x,如图2所示,
则经过点A且与直线OD平行的直线的解析式为y=﹣x﹣4,
解方程组,
消去y,得x2﹣4x﹣32=0,即(x﹣8)(x+4)=0,
∴x1=8,x2=﹣4(舍去),
∴y=﹣12,
∴点P1的坐标为(8,﹣12);
直线AC的解析式为y=x+4,
则经过点O且与直线AC平行的直线的解析式为y=x,
解方程组,
消去y,得x2+4x﹣16=0,即x=﹣2+2,
∴x1=﹣2﹣2,x2=﹣2+2(舍去),
∴y=﹣2﹣2,
∴点P2的坐标为(﹣2﹣2,﹣2﹣2).
【点评】此题属于二次函数综合题,涉及的知识有:待定系数法确定二次函数解析式,坐标与图形性质,直线与抛物线的交点,直线与圆相切的性质,锐角三角函数定义,以及等腰直角三角形的性质,熟练掌握二次函数的性质是解本题的关键.
2022年广东省深圳市龙岗区中考数学一模试卷: 这是一份2022年广东省深圳市龙岗区中考数学一模试卷,共25页。试卷主要包含了下列几何体中,左视图是圆的是,一元二次方程的解是,中,,则的值是,下列命题中,假命题的是等内容,欢迎下载使用。
精品解析:2022年广东省深圳市龙岗区中考数学一模试题: 这是一份精品解析:2022年广东省深圳市龙岗区中考数学一模试题,文件包含精品解析2022年广东省深圳市龙岗区中考数学一模试题原卷版docx、精品解析2022年广东省深圳市龙岗区中考数学一模试题解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
精品解析:2022年广东省深圳市龙岗区金稻田学校中考数学一模试卷: 这是一份精品解析:2022年广东省深圳市龙岗区金稻田学校中考数学一模试卷,文件包含精品解析2022年广东省深圳市龙岗区金稻田学校中考数学一模试卷原卷版docx、精品解析2022年广东省深圳市龙岗区金稻田学校中考数学一模试卷解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。