小学数学苏教版四年级下册多边形的内角和教案
展开教学目标:
1、掌握计算多边形的内角和的方法 ,并能进行简单的应用 。 通过对简单多边形的内角和的探究,发现规律,归纳出n边形的内角和公式;
2、通过对多边形多种转化形式的探究,体验解决问题时策略的多样性 ,培养实践能力与创新能力。
3、培养、锻炼学生与他人合作交流的能力。学生通过类比、联想、转化、推理等探究活动,体验成功的快乐,感受数学研究的乐趣。
教学重点:多边形的内角和公式的探究。
教学难点:如何把多边形转化成三角形来探索多边形的内角和。
教学工具:多媒体课件、三角板、答题卡。
教学过程:
创设问题情境
简要复习,引出探究课题
2、说出三角形各个角的度数(幻灯片出示三角形) 你知道它的内角和是多少吗?
自主学习
1、 因为三角形的内角和已经知道是多少了,所以我们接着探究另外的一个 多边形—四边形的内角和。你知道长方形、正方形的内角和是多少吗? 你猜想一下“任意四边形的内角和是多少”?(幻灯片再次出示图形)
你是怎样得到的?你能找出几种方法?这样同学们 先小组探究一下,把答案写在答题纸上(师深入小组参与活动、加入讨论,必要时给予指导:可直接引导学生用辅助线的方法把四边形转化为三角形。学生画图想办法求出四边形的内角和。自己思考并说明理由。) 让小组展示探究结果,适时鼓励,师用幻灯片演示学生想出的方法,体会到四边形分成两个三角形,求出四边形的内角和。
师追问:为什么要利用辅助线将四边形分割成三角形呢?(因为我们知道三角形的内角和是180°)利用同学们刚才的方法能求出五边形、六边形的内角和吗?独立思考后,交流讨论,找同学板演分割方法,并分别讲解思路。
生A:作五边形的对角线,将其分成三个三角形,因而内角和540
生B:作六边形的对角线,将其分成四个三角形,因而内角和720
生独立思考,师深入指导。集中展示探究结果
师:那你们观察比较一下,哪一种图形所体现的规律性更明显呢?
生:对角线过同一顶点的图形。 师:那由此你们能猜出n边形的内角和吗?
为了便于观察,我们一起来把刚才得到的结果总结在一个表格里:
多边形的边数3 、4、 5、 6 n ,分成三角形的个数 1 、2 3 、 n-2, 内角和180 、 2×180 、 3×180 、 4×180 …… (n-2)×180
板书学生展示的表达式,归纳写出公式:
n边形的内角和边等于(n -2)·180°
4、利用这个公式我们可以求出七边形的内角和(n-2)×180=(7-2)×180= 900°。以此类推,我们能求得任意多边形的内角和。
三、当堂训练
利用这个公式,我们就可以很快地求出任意多边形的内角和,大家看幻灯片出示练习题,生解答、师巡视指导,根据其回答情况适时肯定表扬。
四、课堂总结
看来同学们已经掌握了本节课的内容,下面老师问:通过这节课的学习,你都学到了哪些知识?你有哪些收获?
课后反思
1、在我们校园内想设计美丽的多边形花坛,猜想:是否能建造一个内角和为2008°的多边形花坛?
2、一天小明爸爸给小明出了一道智力题考考他。将一个多边形截去一个角后(没有过顶点)得到多边形的内角和将会( )
A、不变 B、增加 180°
C、减少 180° D、无法确定
多边形的边数
3
4
5
6
……
n
分成的三角形个数
1
2
3
4
……
n-2
多边形的内角和
180
360
540
720
……
(n-2)×180
2021学年多边形的内角和教案设计: 这是一份2021学年多边形的内角和教案设计,共4页。
苏教版四年级下册多边形的内角和教学设计: 这是一份苏教版四年级下册多边形的内角和教学设计,共3页。
小学数学苏教版四年级下册多边形的内角和教案: 这是一份小学数学苏教版四年级下册多边形的内角和教案,共4页。教案主要包含了创设情境,认识多边形,合作探究等内容,欢迎下载使用。