搜索
    上传资料 赚现金
    1.2 空间向量基本定理(学案)-2022-2023学年高二数学教材(人教A版2019选择性必修第一册)
    立即下载
    加入资料篮
    1.2 空间向量基本定理(学案)-2022-2023学年高二数学教材(人教A版2019选择性必修第一册)01
    1.2 空间向量基本定理(学案)-2022-2023学年高二数学教材(人教A版2019选择性必修第一册)02
    1.2 空间向量基本定理(学案)-2022-2023学年高二数学教材(人教A版2019选择性必修第一册)03
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中人教A版 (2019)1.2 空间向量基本定理学案及答案

    展开
    这是一份高中人教A版 (2019)1.2 空间向量基本定理学案及答案,共8页。学案主要包含了学习目标,自主学习,小试牛刀,经典例题,跟踪训练,当堂达标,参考答案等内容,欢迎下载使用。

    【自主学习】
    空间向量基本定理
    定理:如果三个向量a,b,c不共面 ,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc. 其中{a,b,c}叫做空间的一个基底,a,b,c都叫做基向量.
    二.单位正交基底
    空间的一个基底中的三个基向量两两垂直,且长度都为1,那么这个基底叫做单位正交基底,常用{i,j,k},a可以分解成三个向量,a=xi+yj+zk,像这样叫做把空间向量进行正交分解。
    【小试牛刀】
    思考辨析(正确的打“√”,错误的打“×”)
    (1)空间的任何一个向量都可用三个给定向量表示.( )
    (2)若{a,b,c}为空间的一个基底,则a,b,c全不是零向量.( )
    (3)如果向量a,b与任何向量都不能构成空间的一个基底,则一定有a与b共线.( )
    (4)任何三个不共线的向量都可构成空间的一个基底.( )
    【经典例题】
    题型一 基底的判断
    判断标准:判断三个空间向量是否共面,若共面,则不能构成基底;若不共面,则能构成基底.
    方法:①如果向量中存在零向量,则不能作为基底;如果存在一个向量可以用另外的向量线性表示,则不能构成基底.
    ②假设a=λb+μc,运用空间向量基本定理,建立λ,μ的方程组,若有解,则共面,不能作为基底;若无解,则不共面,能作为基底.
    例1 设x=a+b,y=b+c,z=c+a,且{a,b,c}是空间的一个基底,给出下列向量:①{a,b,x};②{b,c,z};③{x,y,a+b+c}.其中可以作为空间的基底的有( )
    A.1个 B.2个 C.3个 D.0个
    【跟踪训练】1已知{e1,e2,e3}是空间的一个基底,且eq \(OA,\s\up6(→))=e1+2e2-e3,eq \(OB,\s\up6(→))=-3e1+e2+2e3,eq \(OC,\s\up6(→))=e1+e2-e3,试判断{eq \(OA,\s\up6(→)),eq \(OB,\s\up6(→)),eq \(OC,\s\up6(→))}能否作为空间的一个基底.
    题型二 用基底表示向量
    点拨:用基底表示向量时,若基底确定,要充分利用向量加法、减法的三角形法则和平行四边形法则,以及向量数乘的运算律;若没给定基底,首先选择基底,选择时,要尽量使所选的基向量能方便地表示其他向量,再就是看基向量的模及其夹角是否已知或易求.
    例2 在平行六面体ABCD-A1B1C1D1中,设eq \(AB,\s\up6(→))=a,eq \(AD,\s\up6(→))=b,eq \(AA1,\s\up6(-→))=c,E,F分别是AD1,BD的中点.
    (1)用向量a,b,c表示eq \(D1B,\s\up6(-→)),eq \(EF,\s\up6(→));
    (2)若eq \(D1F,\s\up6(-→))=xa+yb+zc,求实数x,y,z的值.
    【跟踪训练】2 如图所示,空间四边形OABC中,G,H分别是△ABC,△OBC的重心,设eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,eq \(OC,\s\up6(→))=c,D为BC的中点.试用向量a,b,c表示向量eq \(OG,\s\up6(→))和eq \(GH,\s\up6(→)).
    【当堂达标】
    以下四个命题中正确的是( )
    A.基底{a,b,c}中可以有零向量
    B.空间任何三个不共面的向量都可构成空间向量的一个基底
    C.△ABC为直角三角形的充要条件是eq \(AB,\s\up6(→))·eq \(AC,\s\up6(→))=0
    D.空间向量的基底只能有一组
    (多选)已知点O,A,B,C为空间不共面的四点,且向量a=eq \(OA,\s\up6(→))+eq \(OB,\s\up6(→))+eq \(OC,\s\up6(→)),向量b=eq \(OA,\s\up6(→))+eq \(OB,\s\up6(→))-eq \(OC,\s\up6(→)),则与a,b能构成空间基底的向量是( )
    A.eq \(OA,\s\up6(→)) B.eq \(OB,\s\up6(→)) C.eq \(OC,\s\up6(→)) D.eq \(OA,\s\up6(→))或eq \(OB,\s\up6(→))
    下列能使向量eq \(MA,\s\up6(-→)),eq \(MB,\s\up6(-→)),eq \(MC,\s\up6(-→))成为空间的一个基底的关系式是( )
    A.eq \(OM,\s\up6(-→))=eq \f(1,3)eq \(OA,\s\up6(→))+eq \f(1,3)eq \(OB,\s\up6(→))+eq \f(1,3)eq \(OC,\s\up6(→)) B.eq \(MA,\s\up6(-→))=eq \(MB,\s\up6(-→))+eq \(MC,\s\up6(-→))
    C.eq \(OM,\s\up6(-→))=eq \(OA,\s\up6(→))+eq \(OB,\s\up6(→))+eq \(OC,\s\up6(→)) D.eq \(MA,\s\up6(-→))=2eq \(MB,\s\up6(-→))-MC
    4.已知a=e1+e2+e3,b=e1+e2-e3,c=e1-e2+e3,d=e1+2e2+3e3,若d=αa+βb+λc,则α,β,λ的值分别为________.
    5.如图,在梯形ABCD中,AB∥CD,AB=2CD,点O为空间任一点,设eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,eq \(OC,\s\up6(→))=c,则向量eq \(OD,\s\up6(→))用a,b,c表示为________.
    6.如图,已知PA⊥平面ABCD,四边形ABCD为正方形,G为△PDC的重心,eq \(AB,\s\up6(→))=i,eq \(AD,\s\up6(→))=j,eq \(AP,\s\up6(→))=k,试用基底{i,j,k}表示向量eq \(PG,\s\up6(→)),eq \(BG,\s\up6(→)).
    【参考答案】
    【小试牛刀】
    × √ √ ×
    【经典例题】
    例1 B 解析:②③均可以作为空间的基底,故选B.
    【跟踪训练】1解 假设eq \(OA,\s\up6(→)),eq \(OB,\s\up6(→)),eq \(OC,\s\up6(→))共面.则存在实λ,μ使得eq \(OA,\s\up6(→))=λeq \(OB,\s\up6(→))+μeq \(OC,\s\up6(→)),
    ∴e1+2e2-e3=λ(-3e1+e2+2e3)+μ(e1+e2-e3)=(-3λ+μ)e1+(λ+μ)e2+(2λ-μ)e3,
    ∵e1,e2,e3不共面,
    ∴eq \b\lc\{\rc\ (\a\vs4\al\c1(-3λ+μ=1,,λ+μ=2,,2λ-μ=-1))此方程组无解,
    ∴eq \(OA,\s\up6(→)),eq \(OB,\s\up6(→)),eq \(OC,\s\up6(→))不共面,∴{eq \(OA,\s\up6(→)),eq \(OB,\s\up6(→)),eq \(OC,\s\up6(→))}可以作为空间的一个基底.
    例2 解 (1)如图,连接AC,
    eq \(D1B,\s\up6(-→))=eq \(D1D,\s\up6(-→))+eq \(DB,\s\up6(→))=-eq \(AA1,\s\up6(-→))+eq \(AB,\s\up6(→))-eq \(AD,\s\up6(→))=a-b-c,
    eq \(EF,\s\up6(→))=eq \(EA,\s\up6(→))+eq \(AF,\s\up6(→))=eq \f(1,2)eq \(D1A,\s\up6(-→))+eq \f(1,2)eq \(AC,\s\up6(→))=-eq \f(1,2)(eq \(AA1,\s\up6(-→))+eq \(AD,\s\up6(→)))+eq \f(1,2)(eq \(AB,\s\up6(→))+eq \(AD,\s\up6(→)))=eq \f(1,2)(a-c).
    (2)eq \(D1F,\s\up6(-→))=eq \f(1,2)(eq \(D1D,\s\up6(-→))+eq \(D1B,\s\up6(-→)))=eq \f(1,2)(-eq \(AA1,\s\up6(-→))+eq \(D1B,\s\up6(-→)))=eq \f(1,2)(-c+a-b-c)=eq \f(1,2)a-eq \f(1,2)b-c,
    ∴x=eq \f(1,2),y=-eq \f(1,2),z=-1.
    【跟踪训练】2解 因为eq \(OG,\s\up6(→))=eq \(OA,\s\up6(→))+eq \(AG,\s\up6(→)),而eq \(AG,\s\up6(→))=eq \f(2,3)eq \(AD,\s\up6(→)),eq \(AD,\s\up6(→))=eq \(OD,\s\up6(→))-eq \(OA,\s\up6(→)),
    又D为BC的中点,所以eq \(OD,\s\up6(→))=eq \f(1,2)(eq \(OB,\s\up6(→))+eq \(OC,\s\up6(→))),所以eq \(OG,\s\up6(→))=eq \(OA,\s\up6(→))+eq \f(2,3)eq \(AD,\s\up6(→))=eq \(OA,\s\up6(→))+eq \f(2,3)(eq \(OD,\s\up6(→))-eq \(OA,\s\up6(→)))
    =eq \(OA,\s\up6(→))+eq \f(2,3)×eq \f(1,2)(eq \(OB,\s\up6(→))+eq \(OC,\s\up6(→)))-eq \f(2,3)eq \(OA,\s\up6(→))=eq \f(1,3)(eq \(OA,\s\up6(→))+eq \(OB,\s\up6(→))+eq \(OC,\s\up6(→)))=eq \f(1,3)(a+b+c).
    又因为eq \(GH,\s\up6(→))=eq \(OH,\s\up6(→))-eq \(OG,\s\up6(→)),eq \(OH,\s\up6(→))=eq \f(2,3)eq \(OD,\s\up6(→))=eq \f(2,3)×eq \f(1,2)(eq \(OB,\s\up6(→))+eq \(OC,\s\up6(→)))=eq \f(1,3)(b+c),
    所以eq \(GH,\s\up6(→))=eq \f(1,3)(b+c)-eq \f(1,3)(a+b+c)=-eq \f(1,3)a.
    所以eq \(OG,\s\up6(→))=eq \f(1,3)(a+b+c),eq \(GH,\s\up6(→))=-eq \f(1,3)a.
    【当堂达标】
    1. B 解析:使用排除法.因为零向量与任意两个非零向量都共面,故A不正确;△ABC为直角三角形并不一定是eq \(AB,\s\up6(→))·eq \(AC,\s\up6(→))=0,可能是eq \(BC,\s\up6(→))·eq \(BA,\s\up6(→))=0,也可能是eq \(CA,\s\up6(→))·eq \(CB,\s\up6(→))=0,故C不正确;空间基底可以有无数多组,故D不正确.
    2. ABD 解析:∵eq \(OC,\s\up6(→))=eq \f(1,2)a-eq \f(1,2)b且a,b不共线,∴a,b,eq \(OC,\s\up6(→))共面,∴eq \(OC,\s\up6(→))与a,b不能构成一组空间基底.
    3. C解析: 对于选项A,由eq \(OM,\s\up6(-→))=xeq \(OA,\s\up6(→))+yeq \(OB,\s\up6(→))+zeq \(OC,\s\up6(→))(x+y+z=1)⇔M,A,B,C四点共面知,eq \(MA,\s\up6(-→)),eq \(MB,\s\up6(-→)),eq \(MC,\s\up6(-→))共面;对于选项B,D,可知eq \(MA,\s\up6(-→)),eq \(MB,\s\up6(-→)),eq \(MC,\s\up6(-→))共面,故选C.
    4. 5. eq \f(5,2),-1,-eq \f(1,2) 解析:∵d=α(e1+e2+e3)+β(e1+e2-e3)+λ(e1-e2+e3)
    =(α+β+λ)e1+(α+β-λ)e2+(α-β+λ)e3=e1+2e2+3e3,
    ∴eq \b\lc\{\rc\ (\a\vs4\al\c1(α+β+λ=1,,α+β-λ=2,,α-β+λ=3,))∴eq \b\lc\{\rc\ (\a\vs4\al\c1(α=\f(5,2),,β=-1,,λ=-\f(1,2).))5. eq \f(1,2)a-eq \f(1,2)b+c 解析 ∵eq \(AB,\s\up6(→))=-2eq \(CD,\s\up6(→)),
    ∴eq \(OB,\s\up6(→))-eq \(OA,\s\up6(→))=-2(eq \(OD,\s\up6(→))-eq \(OC,\s\up6(→))),∴b-a=-2(eq \(OD,\s\up6(→))-c),∴eq \(OD,\s\up6(→))=eq \f(1,2)a-eq \f(1,2)b+c.
    6.解:延长PG交CD于点N,则N为CD的中点,
    eq \(PG,\s\up6(→))=eq \f(2,3)eq \(PN,\s\up6(→))=eq \f(2,3)eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,2)\(PC,\s\up6(→))+\(PD,\s\up6(→))))=eq \f(1,3)(eq \(PA,\s\up6(→))+eq \(AB,\s\up6(→))+eq \(AD,\s\up6(→))+eq \(AD,\s\up6(→))-eq \(AP,\s\up6(→)))
    =eq \f(1,3)eq \(AB,\s\up6(→))+eq \f(2,3)eq \(AD,\s\up6(→))-eq \f(2,3)eq \(AP,\s\up6(→))=eq \f(1,3)i+eq \f(2,3)j-eq \f(2,3)k.
    eq \(BG,\s\up6(→))=eq \(BC,\s\up6(→))+eq \(CN,\s\up6(→))+eq \(NG,\s\up6(→))=eq \(BC,\s\up6(→))+eq \(CN,\s\up6(→))+eq \f(1,3)eq \(NP,\s\up6(→))=eq \(AD,\s\up6(→))-eq \f(1,2)eq \(DC,\s\up6(→))-eq \f(1,3)eq \(PN,\s\up6(→))=eq \(AD,\s\up6(→))-eq \f(1,2)eq \(AB,\s\up6(→))-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,6)\(AB,\s\up6(→))+\f(1,3)\(AD,\s\up6(→))-\f(1,3)\(AP,\s\up6(→))))
    =eq \f(2,3)eq \(AD,\s\up6(→))-eq \f(2,3)eq \(AB,\s\up6(→))+eq \f(1,3)eq \(AP,\s\up6(→))=-eq \f(2,3)i+eq \f(2,3)j+eq \f(1,3)k.课程标准
    学科素养
    1.理解空间向量的正交分解,空间向量的基本定理,
    2.能用空间一个基底表示空间的任意向量.(重点)
    1、数学运算
    2、数学抽象
    相关学案

    高中数学人教A版 (2019)选择性必修 第一册第一章 空间向量与立体几何1.2 空间向量基本定理导学案及答案: 这是一份高中数学人教A版 (2019)选择性必修 第一册<a href="/sx/tb_c4000321_t4/?tag_id=42" target="_blank">第一章 空间向量与立体几何1.2 空间向量基本定理导学案及答案</a>,共2页。学案主要包含了巩固诊断等内容,欢迎下载使用。

    高中1.2 空间向量基本定理学案及答案: 这是一份高中<a href="/sx/tb_c4000321_t4/?tag_id=42" target="_blank">1.2 空间向量基本定理学案及答案</a>,共5页。学案主要包含了复习回顾,讲授新知,典例讲评,新课讲解等内容,欢迎下载使用。

    数学选择性必修 第一册1.2 空间向量基本定理优秀学案及答案: 这是一份数学选择性必修 第一册1.2 空间向量基本定理优秀学案及答案,共11页。学案主要包含了学习目标,自主学习,小试牛刀,经典例题,跟踪训练,当堂达标,参考答案等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        1.2 空间向量基本定理(学案)-2022-2023学年高二数学教材(人教A版2019选择性必修第一册)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map