2021雅安高三下学期5月第三次诊断考试数学(理)试题PDF版含答案
展开
这是一份2021雅安高三下学期5月第三次诊断考试数学(理)试题PDF版含答案,文件包含2021届高三四川省雅安市高三第三次诊断考试数学理答案docx、2021届高三四川省雅安市高三第三次诊断考试数学理试题pdf版pdf等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
雅安市高中2018级第三次诊断性考试数学(理科)参考答案及评分标准一.选择题1.A 2.C 3.D 4. B 5. C 6. C 7. C 8.B 9.C 10. A 11. D 12.A二.填空题13.3 14. 15. 3 16.②③④ 三.解答题17.解:∵是与的等差中项∴=∴ ∴........................................................3分∵∴∴ ∴ ....................6分(2)由(1)得...........8分......10分∵数列为单调递增的数列,∴ ∴ . ...........12分 18.解:(1)由已知可得,岁及以下采用乘坐成雅高铁出行的有人············..................................................1分列联表如表: 40岁及以下40岁上合计乘成雅高铁401050不乘成雅高铁203050合计6040100·········.......................................................····4分由列联表中的数据计算可得的观测值·································6分由于,故有的把握认为“采用乘坐成雅高铁出行与年龄有关”.····························································7分(2)采用分层抽样的方法,从“岁及以下”的人中抽取人,从“岁以上”的人中抽取人,···································8分的可能取值为: ···········································10分故分布列如表:数学期望.·············12分19.解:(Ⅰ)证明:因为PA⊥底面ABCD,所以PA⊥CD,因为∠PCD=90,所以PC⊥CD,所以CD⊥平面PAC,所以CD⊥AC.······························································4分(Ⅱ)因为底面ABCD是平行四边形,CD⊥AC,所以AB⊥AC.又PA⊥底面ABCD,所以AB,AC,AP两两垂直.如图所示,以点A为原点,以为x轴正方向,以为单位长度,建立空间直角坐标系. 则B(1,0,0),C(0,1,0),P(0,0,1),D(-1,1,0).设,则,又∠DAE=60°,则,即,解得. ···································· 8分则,,所以.因为,所以.又,故二面角B-AE-D的余弦值为.·······················……12分另解:同上,E(0,,).设是平面BAE的法向量,解得法向量,设是平面DAE的法向量,解得法向量,,由图可知,二面角的余弦值为. 20.解:(1),·············································1分由题知,则椭圆的标准方程··········································4分(2)(i)若的斜率不存在,则此时······································.5分(ii)若的斜率存在,设,设的方程为:,,·······················6分由韦达定理得:·········································7分,·················································8分 ··············································11分所以:为定值1.··············································12分另解:(2)当直线AB的斜率为0时,,·········5分 当直线AB的斜率不为0时,设直线AB为:,设则:,···································6分,·········································7分则:,··············································8分,··················································11分所以:为定值1.·················································12分21题:解:(1)由题意,,可得a=(x>0),·············1分转化为函数T(x)=与直线y=a在(0,+∞)上有两个不同交点,········2分T′(x)=(x>0),故当x∈(0,1)时,T′(x)>0;当x∈(1,+∞)时,T′(x)<0,故T(x)在(0,1)上单调递增,在(1,+∞)上单调递减,·······················4分所以T(x)max=T(1)=1.又T=0,故当x∈时,T(x)<0,当x∈时,T(x)>0. ·······5分可得a∈(0,1).························································6分另解:则:,·········1分①当时,恒成立,不满足题意;······3分②当时,单调递减,则,当····························5分综上:·······················································6分(2)证明: h′(x)=-a, 因为x1,x2是ln x-ax+1=0的两个根,故ln x1-ax1+1=0,ln x2-ax2+1=0⇒a=,·················..·8分要证h′(x1x2)<1-a,只需证x1x2>1,即证ln x1+ln x2>0,即证(ax1-1)+(ax2-1)>0,即只需证明 a>成立,即证>.·························9分不妨设0<x1<x2,故ln <=.(*)····························10分令t=∈(0,1),φ(t)=ln t-,······································11分φ′(t)=-=>0,则h(t)在(0,1)上单调递增,则φ(t)< φ(1)=0,故(*)式成立,即要证不等式得证.······································12分22. 解 :(1)直线l的直角坐标方程为:························2分曲线C的极坐标方程为:,即,化为直角坐标方程:.将曲线C上所有点的横坐标缩短为原来的一半,纵坐标不变,得到曲线:. ··············································5分(2)直线的极坐标方程为,展开可得:.可得直角坐标方程:.可得参数方程:(为参数). ····························7分代入曲线的直角坐标方程可得:.解得,.∴.·······································10分23.解:(1)或解出或无解, 所以,原不等式的解集为[0,1]····················5分另解:(1)当时,等价于,则∴或无解综上,原不等式的解集为[0,1]···········································5分 (2)当时,,因为,所以恒成立,即恒成立,所以满足的解集为;而,当时,,当时,,作出的图像如上图所示, 要使的解集为,则需或,解得或;综上可得:a的取值范围是. ·····································10 分
相关试卷
这是一份2023广安、遂宁、雅安等六高三上学期第一次诊断考试数学(理)PDF版含答案,文件包含2023地区一诊理数答案简pdf、理数pdf等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
这是一份2020泸州高三第三次教学质量诊断性考试数学(理)试题PDF版含答案
这是一份2020雅安高中高三第三次诊断数学(理)试题含答案