2021雅安高三下学期5月第三次诊断考试数学(文)试题PDF版含答案
展开雅安市高中2018级第三次诊断性考试
数学(文科)参考答案及评分标准
一.选择题
1.C 2.A 3.D 4.B 5.C 6.D 7.C 8.D 9.B 10.C 11.B 12.A
二.填空题
13.1 14. 15. 5 16. ②③④
三、解答题
17解:∵是与的等差中项
∴=
∴ ∴........................................................3分
∵∴∴ ∴ ....................6分
(2) ∵
∴........................................9分
..................................11分
∴.............................................................................................................................12分
18解:(1)由已知可得,40岁及以下采用乘坐成雅高铁出行的有
人··························································1分
| 40岁及以下 | 40岁上 | 合计 |
乘成雅高铁 | 40 | 10 | 50 |
不乘成雅高铁 | 20 | 30 | 50 |
合计 | 60 | 40 | 100 |
列联表如表:
········································································4分
由列联表中的数据计算可得的观测值
····································6分
由于,故有的把握认为“采用乘坐成雅高铁出行与年龄有关”.7分
(2)采用分层抽样的方法,从“岁(含)以下”的人中抽取人,记为1.2.3,
从“岁以上”的人中抽取人,记为a.b. ··············8分
则基本事件为(1,2),(1,3),(1,a),(1,b),(2,3),(2,a),(2,b),(3,a),(3,b),(a,b),共10个.··································································10分
符合条件的共6种,故抽到2人中恰有一人为40岁以上的概率为6/10=0.6.·········12分
- 解(1)由题意,可知在等腰梯形中,,
∵,分别为,的中点,
∴,.
∴折叠后,,.
∵,∴平面. ···································4分
又平面,∴. ······································6分
(2)易知,.
∵,∴.
又,∴四边形为平行四边形.
∴,故.
∵平面平面,平面平面,且,
∴平面. ·······························································9分
∴
.
即三棱锥的体积为. ···········································12分
20.解:(1)①,
且过点,②
③
由①②③解得:,
椭圆的标准方程,..........................................4分
(2)(i)若的斜率不存在,则
此时.........................................5分
(ii)若的斜率存在,设,设的方程为:,
,.........................6分
由韦达定理得:...........................7分
则:,............................................8分
=...............................................11分
所以:=1........................................................12分
另解:(2)当直线AB的斜率为0时,,..........5分
当直线AB的斜率不为0时,设直线AB为:,设则:
,....................................6分
,..........................................7分
则:,..............................................8分
,...................................................11分
所以:.........................................................12分
- 解:(1)由题意,,可得a=(x>0),...............1分
转化为函数T(x)=与直线y=a在(0,+∞)上有两个不同交点...........2分
T′(x)=(x>0),
故当x∈(0,1)时,T′(x)>0;当x∈(1,+∞)时,T′(x)<0,
故T(x)在(0,1)上单调递增,在(1,+∞)上单调递减,························4分
所以T(x)max=T(1)=1.
又T=0,故当x∈时,T(x)<0,当x∈时,T(x)>0. ·········5分
可得a∈(0,1).··························································6分
另解:则:,...........1分
①当时,恒成立,不满足题意;······.3分
②当时,单调递减,
则,当
.................................5分
综上:...........................................................6分
(2)证明: h′(x)=-a, 因为x1,x2是ln x-ax+1=0的两个根,
故ln x1-ax1+1=0, ln x2-ax2+1=0⇒ a=,··················8分
要证h′(x1x2)<1-a,
只需证x1x2>1, 即证ln x1+ln x2>0, 即证(ax1-1)+(ax2-1)>0,
即只需证明 a>成立,即证>.··························9分
不妨设0<x1<x2,故ln <=.( * )···························10分
令t=∈(0,1),φ(t)=ln t-,······································11分
φ′(t)=-=>0,
则h(t)在(0,1)上单调递增,则φ(t)< φ(1)=0,
故(*)式成立,即要证不等式得证.······································12分
22. 解 :(1)直线l的直角坐标方程为:························2分
曲线C的极坐标方程为:,即,
化为直角坐标方程:.
将曲线C上所有点的横坐标缩短为原来的一半,纵坐标不变,
得到曲线:. ···············································5分
(2)直线的极坐标方程为,
展开可得:.
可得直角坐标方程:.
可得参数方程:(为参数). ····························7分
代入曲线的直角坐标方程可得:.
解得,.
∴
. ··········································10分
23.解:(1)或
解出或无解, 所以,原不等式的解集为[0,1]··························5分
另解:(1)当时,等价于,则
∴或无解
综上,原不等式的解集为[0,1]·················································.5分
(2)当时,,因为,所以恒成立,即恒成立,所以满足的解集为;
而,
当时,,
当时,,作出的图像如下图所示,
要使的解集为,则需或,解得或;
综上可得:a的取值范围是. ····10 分
2020雅安高中高三第三次诊断数学(文)试题含答案: 这是一份2020雅安高中高三第三次诊断数学(文)试题含答案
2021雅安高三下学期5月第三次诊断考试数学(理)试题PDF版含答案: 这是一份2021雅安高三下学期5月第三次诊断考试数学(理)试题PDF版含答案,文件包含2021届高三四川省雅安市高三第三次诊断考试数学理答案docx、2021届高三四川省雅安市高三第三次诊断考试数学理试题pdf版pdf等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
2021雅安高三下学期5月第三次诊断考试数学(理)含答案: 这是一份2021雅安高三下学期5月第三次诊断考试数学(理)含答案,共15页。试卷主要包含了答题前,考生务必将自己的姓名,考试结束后,将答题卡收回等内容,欢迎下载使用。