四川省雅安市2021届高三下学期5月第三次诊断考试:数学(理)试题+答案 (PDF版)
展开一.选择题
1.A 2.C 3.D 4. B 5. C 6. C 7. C 8.B 9.C 10. A 11. D 12.A
二.填空题
13.3 14. 15. 3 16.②③④
三.解答题
17.解:∵是与的等差中项
∴=
∴ ∴分
∵∴∴ ∴ 分
(2)由(1)得分
分
∵数列为单调递增的数列,∴ ∴ . 分
18.解:(1)由已知可得,岁及以下采用乘坐成雅高铁出行的有
人············分
列联表如表:
·············4分
由列联表中的数据计算可得的观测值
·································6分
由于,故有的把握认为“采用乘坐成雅高铁出行与年龄有关”.····························································7分
(2)采用分层抽样的方法,从“岁及以下”的人中抽取人,
从“岁以上”的人中抽取人,···································8分
的可能取值为:
···········································10分
故分布列如表:
数学期望.·············12分
19.解:(Ⅰ)证明:因为PA⊥底面ABCD,所以PA⊥CD,
因为∠PCD=90,所以PC⊥CD,
所以CD⊥平面PAC,
所以CD⊥AC.······························································4分
(Ⅱ)因为底面ABCD是平行四边形,CD⊥AC,所以AB⊥AC.又PA⊥底面ABCD,所以AB,AC,AP两两垂直.
如图所示,以点A为原点,以为x轴正方向,以为单位长度,建立空间直角坐标系.
则B(1,0,0),C(0,1,0),P(0,0,1),D(-1,1,0).
设,则,
又∠DAE=60°,则,
即,解得. ···································· 8分
则,,
所以.
因为,所以.
又,故二面角B-AE-D的余弦值为.·······················……12分
另解:同上,E(0,,).
设是平面BAE的法向量,解得法向量,
设是平面DAE的法向量,解得法向量,
,由图可知,二面角的余弦值为.
20.解:(1),·············································1分
由题知,则
椭圆的标准方程··········································4分
(2)(i)若的斜率不存在,则
此时······································.5分
(ii)若的斜率存在,设,设的方程为:,
,·······················6分
由韦达定理得:·········································7分
,·················································8分
··············································11分
所以:为定值1.··············································12分
另解:(2)当直线AB的斜率为0时,,·········5分
当直线AB的斜率不为0时,设直线AB为:,设则:
,···································6分
,·········································7分
则:,··············································8分
,··················································11分
所以:为定值1.·················································12分
21题:解:(1)由题意,,可得a=eq \f(1+ln x,x)(x>0),·············1分
转化为函数T(x)=eq \f(1+ln x,x)与直线y=a在(0,+∞)上有两个不同交点,········2分
T′(x)=eq \f(-ln x,x2)(x>0),
故当x∈(0,1)时,T′(x)>0;当x∈(1,+∞)时,T′(x)<0,
故T(x)在(0,1)上单调递增,在(1,+∞)上单调递减,·······················4分
所以T(x)max=T(1)=1.
又Teq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,e)))=0,故当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,e)))时,T(x)<0,当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,e),+∞))时,T(x)>0. ·······5分
可得a∈(0,1).························································6分
另解:则:,·········1分
= 1 \* GB3 \* MERGEFORMAT ①当时,恒成立,不满足题意;······3分
= 2 \* GB3 \* MERGEFORMAT ②当时,单调递减,
则,当
····························5分
综上:·······················································6分
(2)证明: h′(x)=eq \f(1,x)-a, 因为x1,x2是ln x-ax+1=0的两个根,
故ln x1-ax1+1=0,ln x2-ax2+1=0⇒a=eq \f(ln x1-ln x2,x1-x2),·················..·8分
要证h′(x1x2)<1-a,
只需证x1x2>1,即证ln x1+ln x2>0,即证(ax1-1)+(ax2-1)>0,
即只需证明 a>eq \f(2,x1+x2)成立,即证eq \f(ln x1-ln x2,x1-x2)>eq \f(2,x1+x2).·························9分
不妨设0
φ′(t)=eq \f(1,t)-eq \f(4,t+12)=eq \f(t-12,tt+12)>0,
则h(t)在(0,1)上单调递增,则φ(t)< φ(1)=0,
故(*)式成立,即要证不等式得证.······································12分
22. 解 :(1)直线l的直角坐标方程为:························2分
曲线C的极坐标方程为:,即,
化为直角坐标方程:.
将曲线C上所有点的横坐标缩短为原来的一半,纵坐标不变,
得到曲线:. ··············································5分
(2)直线的极坐标方程为,
展开可得:.
可得直角坐标方程:.
可得参数方程:(为参数). ····························7分
代入曲线的直角坐标方程可得:.
解得,.
∴
.·······································10分
23.解:(1)或
解出或无解, 所以,原不等式的解集为[0,1]····················5分
另解:(1)当时,等价于,则
∴或无解
综上,原不等式的解集为[0,1]···········································5分
(2)当时,,因为,所以恒成立,即恒成立,所以满足的解集为;
而,
当时,,
当时,,作出的图像如上图所示,
要使的解集为,则需或,解得或;
综上可得:a的取值范围是. ·····································10 分
40岁及以下
40岁上
合计
乘成雅高铁
40
10
50
不乘成雅高铁
20
30
50
合计
60
40
100
四川省雅安市2020届高三第三次诊断数学(理)试题 Word版含解析: 这是一份四川省雅安市2020届高三第三次诊断数学(理)试题 Word版含解析,共24页。试卷主要包含了考试结束后,将答题卡收回,设不为1的实数,,满足,已知直线被圆,函数在处取得最大值,则的值为等内容,欢迎下载使用。
四川省绵阳市2021届高三第三次诊断性考试数学(理)试题(PDF无答案): 这是一份四川省绵阳市2021届高三第三次诊断性考试数学(理)试题(PDF无答案),共4页。
四川省雅安市2022届高三第三次诊断性考试数学(文)试题-: 这是一份四川省雅安市2022届高三第三次诊断性考试数学(文)试题-,共20页。