广西省桂林市秀峰区2022学年七年级(下)数学期末综合复习题
展开
这是一份广西省桂林市秀峰区2022学年七年级(下)数学期末综合复习题,共5页。试卷主要包含了单项选择等内容,欢迎下载使用。
广西省桂林市秀峰区2022学年七年级(下)数学期末综合复习题一、单项选择(本题包括10个小题,每小题3分,共30分。下列各题,每小题只有一个选项符合题意。)1. 已知实数a,b,若a>b,则下列结论错误的是( )A.a-5>b-5 B.3+a>b+3C.> D.-3a>-3b2. 为了了解某中学学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是( )A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校七、八、九年级中各随机抽取10%的学生3. 对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,可得出样本容量是( )A.15 B.40 C.50 D.604. 正数x的两个平方根分别为3-a和2a+7,则44-x的立方根为( )A.-5 B.5C.13 D.105. 甲校的女生占所有学生的50%,乙校的男生占所有学生的60%,那么( )A.甲校的女生人数多 B.乙校的女生人数多C.两个学校的女生人数一样多 D.不能判断哪一个学校的女生人数多6. 如图,坐标平面上有P,Q两点,其坐标分别为(5,a),(b,7),根据图中P,Q两点的位置,则点(6-b,a-10)在( )A.第一象限 B.第二象限C.第三象限 D.第四象限7. 如图,直线a,b被直线c所截,若a∥b,∠1=130°,则∠2等于( )A.30° B.40° C.50° D.60°8. 如图,在边长为1的正方形网格中,将△ABC向右平移两个单位长度,再向下平移三个单位长度得到△A′B′C′,则点B′的坐标是( )A.(0,-1) B.(1,2) C.(2,-1) D.(1,-1)9. 某商店一周中每天卖出的衬衣分别是:16件、19件、15件、18件、22件、30件、26件,为了反映这一周销售衬衣的变化情况,应该制作的统计图是( )A.扇形统计图 B.条形统计图 C.折线统计图 D.直方图10. 如图是一汽车探照灯纵剖面,从位于O点的灯泡发出的两束光线OB,OC经过灯碗反射以后平行射出,如果∠ABO=α,∠DCO=β,则∠BOC的度数是( ) A.a+β B.180°-α C.(a+β) D.90°+(a+β)二.填空题(共5题,每小题3分,总计15分)11. += . 12. 如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则∠ACB= .13. 已知线段MN平行于x轴,且MN的长度为5,若M的坐标为(2,-2),那么点N的坐标是________;14. 若,则3(x+y)-(3x-5y)的值是__________. 15. 《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为________; 三.解答题(共7题,总计75分)16. 计算:-(-2)2+-17. 解方程组: 18. 如图,已知∠1+∠2=180°,∠B=∠3,求证:DE∥BC.19. 如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题: (1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标; (2)求出在整个平移过程中,△ABC扫过的面积.20. 某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨),并将调查数据进行了如下整理:4.7 2.1 3.1 2.3 5.2 2.8 7.3 4.3 4.8 6.74.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.54.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5 (1)把上面的频数分布表和频数分布直方图补充完整; (2)从直方图中你能得到什么信息?(写出两条即可) (3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?21. (1)根据下列叙述填依据:已知:如图①,AB∥CD,∠B+∠BFE=180°,求∠B+∠BFD+∠D的度数.解:因为∠B+∠BFE=180°,所以AB∥EF( _________).又因为AB∥CD,所以CD∥EF(_________).所以∠CDF+∠DFE=180°(_________).所以∠B+∠BFD+∠D=∠B+∠BFE+∠DFE+∠D=360°.(2)根据以上解答进行探索:如图②,AB∥EF,∠BDF与∠B,∠F有何数量关系?并说明理由.(3)如图③④,AB∥EF,你能探索出图③、图④两个图形中,∠BDF与∠B,∠F的数量关系吗?请直接写出结果. 22. 为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?
参考答案一.选择题 1. D 2. D 3. B 4. A 5. D 6. D 7. C 8. D 9. C 10. D二. 填空题11. -12. 105°13. (7,−2)或(−3,−2).14. 2415. 三. 解答题16. 原式=-4+2-(-4)=217. 解:②×2得,6x+4y=26,③①-③得,y=5.将y=5代入①得,6x+25=31,则x=1.所以方程组的解为18. 证明:∵∠1+∠2=180°,∴AB∥EF,∴∠B=∠EFC,∵∠B=∠3,∴∠3=∠EFC,∴DE∥BC.19. 解:(1)平移后的△A′B′C′如图所示;点A′、B′、C′的坐标分别为(-1,5)、(-4,0)、(-1,0); (2)由平移的性质可知,四边形AA′B′B是平行四边形,∴△ABC扫过的面积=S四边形AA′B′B+S△ABC=B′B·AC+BC·AC=5×5+×3×5=25+=.20. 解:(1) 13 正 5 (2)答案不唯一:如①从直方图可以看出:居民月均用水量大部分在2.0至6.5之间;②居民月均用水量在3.5<x≤5.0范围内最多,有19户;③居民月均用水量在8.0<x≤9.5范围内的最少,只有2户等.(合理即可) (3)要使60%的家庭收费不受影响,家庭月均用水量应该定为5吨,因为月均用水量不超过5吨的有30户,占总户数的60%.21. 解:(1)同旁内角互补,两直线平行;平行于同一直线的两条直线互相平行;两直线平行,同旁内角互补(2)∠BDF=∠B+∠F,理由如下:如图,过点D向右作DC∥AB,所以∠B=∠BDC.又因为AB∥EF,所以DC∥EF,所以∠CDF=∠F.又∠BDF=∠BDC+∠CDF,所以∠BDF=∠B+∠F. (3)两个图形中,∠BDF与∠B,∠F的数量关系均为∠BDF=∠F-∠B.22. 解:(1)设男式单车x元/辆,女式单车y元/辆,根据题意,得: ,解得: 答:男式单车2000元/辆,女式单车1500元/辆; (2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9≤m≤12,∵m为整数,∴m的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,∵W随m的增大而增大,∴当m=9时,W取得最小值,最小值为39500,答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.
相关试卷
这是一份广西省容县2022学年七年级(下)数学期末综合复习题,共5页。试卷主要包含了单项选择等内容,欢迎下载使用。
这是一份广西省桂林市叠彩区2022学年七年级(下)数学期末综合复习题,共5页。试卷主要包含了单项选择等内容,欢迎下载使用。
这是一份广西省桂林市雁山区2022学年七年级(下)数学期末综合复习题,共5页。试卷主要包含了单项选择等内容,欢迎下载使用。