人教版数学九年级上册《二次函数图象性质》同步练习(2份,2课时含答案+原卷版)
展开
这是一份人教版数学九年级上册《二次函数图象性质》同步练习(2份,2课时含答案+原卷版),文件包含人教版数学九年级上册《二次函数图象性质》同步练习2课时含答案doc、人教版数学九年级上册《二次函数图象性质》同步练习2课时原卷版doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
二次函数的图象与性质(一)一.选择题1.抛物线y=2x2﹣1的顶点坐标是( )A.(0,1) B.(0,﹣1) C.(1,0) D.(﹣1,0)2.抛物线y=ax2+b(a≠0)与x轴有两个交点,且开口向上,则a、b的取值范围是( )A.a>0,b<0 B.a>0,b>0 C.a<0,b<0 D.a<0,b>03.小敏在某次投篮中,球的运动路线是抛物线y=x2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离L是( )A.3.5m B.4m C.4.5m D.4.6m4.抛物线y=2x2﹣3可以看作由抛物线y=2x2如何变换得到的( )A.向上平移3个单位长度 B.向下平移3个单位长度C.向左平移3个单位长度 D.向右平移3个单位长度5.抛物线y=﹣2x2+1的对称轴是( )A.直线 B.直线 C.y轴 D.直线x=2 6.抛物线y=x2﹣4与x轴交于B,C两点,顶点为A,则△ABC的周长为( )A.4 B.4+4 C.12 D.2+47.在同一平面直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致所示中的( )A. B. C. D.二.填空题8.函数y=ax2+c(a≠0)的图象是一条______,对称轴是______,顶点是______,当a>0,抛物线开口______,顶点是抛物线的______,当a<0,抛物线开口______,顶点是抛物线的______.9.抛物线y=﹣2x2﹣3的开口______,对称轴是______,顶点坐标是______,当x______时,y随x的增大而增大,当x______时,y随x的增大而减小.10.若二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为______.11.任给一些不同的实数k,得到不同的抛物线y=x2+k,当k取0,±1时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是______.12.点A(3,m)在抛物线y=x2﹣1上,则点A关于x轴的对称点的坐标为______.13.若抛物线y=x2+(m﹣2)x+3的对称轴是y轴,则m=______.14.若一条抛物线与y=的形状相同且开口向上,顶点坐标为(0,2),则这条抛物线的解析式为______.15.与抛物线y=﹣+3关于x轴对称的抛物线的解析式为______.16.已知A(﹣1,y1),B(,y2),C(2,y3)三点都在二次函数y=ax2﹣1(a>0)的图象上,那么y1,y2,y3的大小关系是______.(用“<”连接) 三.解答题17.已知抛物线y=ax2+b过点(﹣2,﹣3)和点(1,6)(1)求这个函数的关系式;(2)当为何值时,函数y随x的增大而增大. 18.已知直线y=2x和抛物线y=ax2+3相交于点A(2,b),求a,b的值. 19.如图,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,点D、E在x轴上,CF交y轴于点B(0,2),且矩形其面积为8,此抛物线的解析式. 二次函数的图象与性质(一)参考答案1.抛物线y=2x2﹣1的顶点坐标是( )A.(0,1) B.(0,﹣1) C.(1,0) D.(﹣1,0)【解答】解:抛物线y=2x2﹣1的顶点坐标为(0,﹣1).故选:B.2.抛物线y=ax2+b(a≠0)与x轴有两个交点,且开口向上,则a、b的取值范围是( )A.a>0,b<0 B.a>0,b>0 C.a<0,b<0 D.a<0,b>0【解答】解:∵开口向上,∴a>0;∵抛物线y=ax2+b(a≠0)与x轴有两个交点,∴0﹣4ab>0,∴b<0.故选A.3.小敏在某次投篮中,球的运动路线是抛物线y=x2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离L是( )A.3.5m B.4m C.4.5m D.4.6m【解答】解:如图,把C点纵坐标y=3.05代入y=x2+3.5中得:x=±1.5(舍去负值),即OB=1.5,所以l=AB=2.5+1.5=4.令解:把y=3.05代入y=﹣x2+3.5中得:x1=1.5,x2=﹣1.5(舍去),∴L=2.5+1.5=4米.故选:B.4.抛物线y=2x2﹣3可以看作由抛物线y=2x2如何变换得到的( )A.向上平移3个单位长度 B.向下平移3个单位长度C.向左平移3个单位长度 D.向右平移3个单位长度【解答】解:∵抛物线y=2x2﹣3顶点坐标为(0,﹣3),抛物线y=2x2顶点坐标为(0,0),∴抛物线y=2x2﹣3可以看作由抛物线y=2x2向下平移3个单位长度得到的,故选B.5.抛物线y=﹣2x2+1的对称轴是( )A.直线 B.直线 C.y轴 D.直线x=2【解答】解:∵抛物线y=﹣2x2+1的顶点坐标为(0,1),∴对称轴是直线x=0(y轴),故选C.6.抛物线y=x2﹣4与x轴交于B,C两点,顶点为A,则△ABC的周长为( )A.4 B.4+4 C.12 D.2+4【解答】解:∵抛物线y=x2﹣4与x轴交于B、C两点,顶点为A,∴B(﹣2,0),C(2,0),A(0,﹣4).∴AB=4,BC=AC==2,∴△ABC周长为:AB+BC+AC=4+4.故应选B.7.在同一平面直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致所示中的( )A. B. C. D.【解答】解:A、由一次函数的图象可知a>0 c>0,由二次函数的图象可知a<0,两者相矛盾;B、由一次函数的图象可知a<0 c>0,由二次函数的图象可知a<0,两者相吻合;C、由一次函数的图象可知a<0 c>0,由二次函数的图象可知a>0,两者相矛盾;D、由一次函数的图象可知a<0 c<0,由二次函数的图象可知a>0,两者相矛盾.故选B.二.填空题8.函数y=ax2+c(a≠0)的图象是一条 抛物线 ,对称轴是 y轴 ,顶点是 (0,c) ,当a>0,抛物线开口 向上 ,顶点是抛物线的 最低点 ,当a<0,抛物线开口 向下 ,顶点是抛物线的 最高点 .【解答】解:函数y=ax2+c(a≠0)的图象是一条抛物线,对称轴是y轴,顶点是(0,c),当a>0,抛物线开口向上,顶点是抛物线的最低点,当a<0,抛物线开口向下,顶点是抛物线的最高点.故答案为:抛物线,y轴,(0,c),向上,最低点,向下,最高点.9.抛物线y=﹣2x2﹣3的开口 向下 ,对称轴是 y轴 ,顶点坐标是 (0,﹣3) ,当x <0 时,y随x的增大而增大,当x >0 时,y随x的增大而减小.【解答】解:抛物线y=﹣2x2﹣3的开口向下,对称轴是y轴,顶点坐标是(0,﹣3),当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小.故答案为:向下,y轴,(0,﹣3),<0,>0.10.若二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为 c .【解答】解:∵在y=ax2+c中,当x取x1,x2(x1≠x2)时,函数值相等,∴抛物线的对称轴是y轴,∴x1,x2互为相反数,∴x1+x2=0,当x=0时,y=c.故填空答案:c. 11.任给一些不同的实数k,得到不同的抛物线y=x2+k,当k取0,±1时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 ①②③④ .【解答】解:抛物线y=x2+k,当k取0,±1时,关于这些抛物线有以下判断:①开口方向都向上,故相同,正确;②对称轴都是y轴,故相同;正确,③形状相同;正确,④都有最底点.正确.其中判断正确的是①②③④.故答案为:①②③④12.点A(3,m)在抛物线y=x2﹣1上,则点A关于x轴的对称点的坐标为 (3,﹣8) .【解答】解:∵A(3,m)在抛物线y=x2﹣1上,∴m=9﹣1=8,∴A点坐标为(3,8),∴点A关于x轴的对称点的坐标为(3,﹣8).故答案为(3,﹣8).13.若抛物线y=x2+(m﹣2)x+3的对称轴是y轴,则m= 2 .【解答】解:∵y=x2+(m﹣2)x+3,∴其对称轴方程为x=﹣,∵其对称轴为y轴,∴﹣=0,解得m=2,故答案为:2.14.若一条抛物线与y=的形状相同且开口向上,顶点坐标为(0,2),则这条抛物线的解析式为 y=x2+2 .【解答】解:根据题意设抛物线解析式为y=x2+b,把x=0,y=2代入得:2=b,则抛物线解析式为y=x2+2,故答案为:y=x2+215.与抛物线y=﹣+3关于x轴对称的抛物线的解析式为 y=x2﹣3 .【解答】解:y=﹣+3的顶点坐标为(0,3),而点(0,3)关于x轴对称的点的坐标为(0,﹣3),所以抛物线y=﹣+3关于x轴对称后抛物线的解析式为y=x2﹣3.故答案为y=x2﹣3. 16.已知A(﹣1,y1),B(,y2),C(2,y3)三点都在二次函数y=ax2﹣1(a>0)的图象上,那么y1,y2,y3的大小关系是 y1<y2<y3 .(用“<”连接)【解答】解:∵二次函数的解析式为y=ax2﹣1(a>0),∴抛物线的对称轴为直线x=0,∵A(﹣1,y1)、B(,y2)、C(2,y3),∴点C离直线x=0最远,点A离直线x=0最近,而抛物线开口向上,∴y1<y2<y3.故答案为y1<y2<y3.三.解答题17.已知抛物线y=ax2+b过点(﹣2,﹣3)和点(1,6)(1)求这个函数的关系式;(2)当为何值时,函数y随x的增大而增大.【解答】解:(1)把点(﹣2,﹣3)和点(1,6)代入y=ax2+b得,解得所以这个函数的关系式为y=﹣3x2+9;(2)∵这个函数的关系式为y=﹣3x2+9;∴对称轴x=0,∵a=﹣3<0,∴抛物线开口向下,∴当x<0时,函数y随x的增大而增大. 18.已知直线y=2x和抛物线y=ax2+3相交于点A(2,b),求a,b的值.【解答】解:把A(2,b)代入y=2x得b=2×2=4,则A点坐标为(2,4),把A(2,4)代入y=ax2+3得4a+3=4,解得a=. 19.如图,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,点D、E在x轴上,CF交y轴于点B(0,2),且矩形其面积为8,此抛物线的解析式.【解答】解:∵抛物线的顶点为A(0,1),∴抛物线的对称轴为y轴,∵四边形CDEF为矩形,∴C、F点为抛物线上的对称点,∵矩形其面积为8,OB=2∴CF=4,∴F点的坐标为(2,2),设抛物线解析式为y=ax2+1,把F(2,2)代入得4a+1=2,解得a=,∴抛物线解析式为y=x2+1.
二次函数的图象和性质(二)一.选择题1.二次函数y=x2的图象向右平移3个单位,得到新的图象的函数表达式是( )A.y=x2+3 B.y=x2﹣3 C.y=(x+3)2 D.y=(x﹣3)22.抛物线y=﹣2(x﹣3)2的顶点坐标和对称轴分别为( )A.(﹣3,0),直线x=﹣3 B.(3,0),直线x=3C.(0,﹣3),直线x=﹣3 D.(0,3),直线x=﹣33.已知二次函数y=3(x+1)2﹣8的图象上有三点A(1,y1),B(2,y2),C(﹣2,y3),则y1,y2,y3的大小关系为( )A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y14.把抛物线y=6(x+1)2平移后得到抛物线y=6x2,平移的方法可以是( )A.沿y轴向上平移1个单位 B.沿y轴向下平移1个单位C.沿x轴向左平移1个单位 D.沿x轴向右平移1个单位5.若二次函数y=x2﹣mx+1的图象的顶点在x轴上,则m的值是( )A.2 B.﹣2 C.0 D.±26.对称轴是直线x=﹣2的抛物线是( )A.y=﹣x2+2 B.y=x2+2 C.y= D.y=3(x﹣2)27.对于函数y=3(x﹣2)2,下列说法正确的是( )A.当x>0时,y随x的增大而减小B.当x<0时,y随x的增大而增大C.当x>2时,y随x的增大而增大D.当x>﹣2时,y随x的增大而减小8.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象都是开口向上;②它们的对称轴都是y轴,顶点坐标都是原点(0,0);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们的开口的大小是一样的.其中正确的说法有( )A.1个 B.2个 C.3个 D.4个二、填空题10.抛物线y=﹣3(x﹣1)2的开口方向______,对称轴是______,顶点坐标是______.11.当x______时,函数y=﹣(x+3)2y随x的增大而增大,当x______时,随x的增大而减小.12.若抛物线y=a(x﹣h)2的对称轴是直线x=﹣1,且它与函数y=3x2的形状相同,开口方向相同,则a=______,h=______.13.抛物线y=(x﹣5)2的开口,对称轴是______,顶点坐标是______,它可以看做是由抛物线y=x2向______平移______个单位长度得到的.抛物线______向右平移3个单位长度即得到抛物线y=2(x﹣1)2.14.已知A(﹣1,y1),B(﹣2,y2),C(3,y3)三点都在二次函数y=﹣2(x+2)2的图象上,则y1,y2,y3的大小关系为______.15.顶点是(2,0),且抛物线y=﹣3x2的形状、开口方向都相同的抛物线的解析式为______.16.对称轴为x=﹣2,顶点在x轴上,并与y轴交于点(0,3)的抛物线解析式为______.三、解答题17.抛物线y=a(x﹣2)2经过点(1,﹣1)(1)确定a的值;(2)求出该抛物线与坐标轴的交点坐标. 18.已知二次函数y=a(x﹣h)2,当x=2时有最大值,且此函数的图象经过点(1,﹣3),求此二次函数的关系式,并指出当x为何值时,y随x的增大而增大. 19.如图,抛物线的顶点M在x轴上,抛物线与y轴交于点N,且OM=ON=4,矩形ABCD的顶点A、B在抛物线上,C、D在x轴上.(1)求抛物线的解析式;(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.
二次函数的图象和性质(二)参考答案一.选择题1.二次函数y=x2的图象向右平移3个单位,得到新的图象的函数表达式是( )A.y=x2+3 B.y=x2﹣3 C.y=(x+3)2 D.y=(x﹣3)2【解答】解:原抛物线的顶点为(0,0),向右平移3个单位,那么新抛物线的顶点为(3,0).可设新抛物线的解析式为:y=(x﹣h)2+k,代入得:y=(x﹣3)2.故选:D. 2.抛物线y=﹣2(x﹣3)2的顶点坐标和对称轴分别为( )A.(﹣3,0),直线x=﹣3 B.(3,0),直线x=3C.(0,﹣3),直线x=﹣3 D.(0,3),直线x=﹣3【解答】解:抛物线y=﹣2(x﹣3)2的顶点坐标为(3,0),对称轴为x=3.故选:B. 3.已知二次函数y=3(x+1)2﹣8的图象上有三点A(1,y1),B(2,y2),C(﹣2,y3),则y1,y2,y3的大小关系为( )A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y1【解答】解:由二次函数y=3(x+1)2﹣8可知,对称轴为x=﹣1,开口向上,可知,A(1,y1),B(2,y2)两点在对称轴右边,y随x的增大而增大,由1<2得y1<y2,A、B、C三点中,C点离对称轴最近,故y3最小.故选B. 4.把抛物线y=6(x+1)2平移后得到抛物线y=6x2,平移的方法可以是( )A.沿y轴向上平移1个单位 B.沿y轴向下平移1个单位C.沿x轴向左平移1个单位 D.沿x轴向右平移1个单位【解答】解:∵y=6x2=6(x+1﹣1)2,∴抛物线y=6x2可由y=6(x+1)2沿x轴向右平移1个单位得出;故选D. 5.若二次函数y=x2﹣mx+1的图象的顶点在x轴上,则m的值是( )A.2 B.﹣2 C.0 D.±2【解答】解:∵二次函数y=x2﹣mx+1的图象的顶点在x轴上,∴二次函数的解析式为:y=(x±1)2,∴m=±2.故选:D. 6.对称轴是直线x=﹣2的抛物线是( )A.y=﹣x2+2 B.y=x2+2 C.y= D.y=3(x﹣2)2【解答】解:A、y=﹣x2+2,对称轴是x=0,此选项错误;B、y=x2+2,对称轴是x=0,此选项错误;C、y=(x+2)2,对称轴是x=﹣2,此选项正确;D、y=3(x﹣2)2,对称轴是x=2,此选项错误.故选:C.7.对于函数y=3(x﹣2)2,下列说法正确的是( )A.当x>0时,y随x的增大而减小B.当x<0时,y随x的增大而增大C.当x>2时,y随x的增大而增大D.当x>﹣2时,y随x的增大而减小【解答】解:∵二次函数y=3(x﹣2)2,的对称轴为x=2,a=3>0,∴开口向上,当x>2时y随x的增大而增大,故A、B、D错误,C正确.故选:C. 8.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象都是开口向上;②它们的对称轴都是y轴,顶点坐标都是原点(0,0);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们的开口的大小是一样的.其中正确的说法有( )A.1个 B.2个 C.3个 D.4个【解答】解:①因为a=3>0,它们的图象都是开口向上,此选项正确;②y=3x2+1对称轴是y轴,顶点坐标是(0,1),y=3(x﹣1)2的对称轴是x=1,顶点坐标是(1,0),此选项错误;③二次函数y=3x2+1当x>0时,y随着x的增大而增大;y=3(x﹣1)2当x10时,y随着x的增大而增大;④因为a=3,所以它们的开口的大小是一样的,此选项正确.综上所知,正确的有①④两个.故选:B. 9.抛物线 y=2(x+2)2 向右平移3个单位长度即得到抛物线y=2(x﹣1)2.【解答】解:依题意知 原抛物线是由抛物线y=2(x﹣1)2向左平移3个单位长度得到的.抛物线y=2(x﹣1)2的顶点坐标是(1,0),则向左平移3个单位长度后的顶点坐标是(﹣2,0),故原抛物线的解析式为:y=2(x+2)2故答案是:y=2(x+2)2. 二、填空题10.抛物线y=﹣3(x﹣1)2的开口方向 下 ,对称轴是 x=1 ,顶点坐标是 (1,0) .【解答】解:由y=﹣3(x﹣1)2可知,二次项系数为﹣3<0,∴抛物线开口向下,对称轴为直线x=1,顶点坐标为(1,0).故本题答案为:向下,x=1,(1,0). 11.当x <﹣3 时,函数y=﹣(x+3)2y随x的增大而增大,当x >﹣3 时,随x的增大而减小.【解答】解:∵函数y=﹣(x+3)2的对称轴为x=﹣3,且开口向下,∴当x<﹣3时,函数y=﹣(x+3)2y随x的增大而增大,当x>﹣3时,随x的增大而减小.故答案为:<﹣3,>﹣3. 12.若抛物线y=a(x﹣h)2的对称轴是直线x=﹣1,且它与函数y=3x2的形状相同,开口方向相同,则a= 3 ,h= ﹣1 .【解答】解:∵抛物线y=a(x﹣h)2的对称轴是直线x=﹣1,∴h=﹣1,∵它与函数y=3x2的形状相同,开口方向相同,∴a=3.故答案为3,﹣1. 13.抛物线y=(x﹣5)2的开口,对称轴是 x=5 ,顶点坐标是 (5,0) ,它可以看做是由抛物线y=x2向 右 平移 5 个单位长度得到的.抛物线 y=2(x+2)2 向右平移3个单位长度即得到抛物线y=2(x﹣1)2.【解答】解:抛物线y=(x﹣5)2的开口向上,对称轴是直线x=5,顶点坐标是(5,0),它可以看作是由抛物线y=x2向右平移5个单位长度得到的.抛物线y=2(x+2)2向右平移3个单位长度即得到抛物线y=2(x﹣1)2.故答案为:向上,x=5,(5,0),右,5,y=2(x+2)2. 14.已知A(﹣1,y1),B(﹣2,y2),C(3,y3)三点都在二次函数y=﹣2(x+2)2的图象上,则y1,y2,y3的大小关系为 y2>y1>y3 .【解答】解:∵二次函数的解析式为y=﹣2(x+2)2,∴抛物线的对称轴为直线x=﹣2,∵A(﹣1,y1),B(﹣2,y2),C(3,y3),∴点B在直线x=﹣2上,点C离直线x=﹣2最远,而抛物线开口向下,∴y2>y1>y3;故答案为y2>y1>y3. 15.顶点是(2,0),且抛物线y=﹣3x2的形状、开口方向都相同的抛物线的解析式为 y=﹣3(x﹣2)2 .【解答】解:由题意可得抛物线的解析式为y=﹣3(x﹣2)2.故答案为:y=﹣3(x﹣2)2. 16.对称轴为x=﹣2,顶点在x轴上,并与y轴交于点(0,3)的抛物线解析式为 y= .【解答】解:设抛物线解析式为y=a(x+2)2,把(0,3)代入可得4a=3,解得a=,所以抛物线解析式为y=,故答案为:y=. 三、解答题17.抛物线y=a(x﹣2)2经过点(1,﹣1)(1)确定a的值;(2)求出该抛物线与坐标轴的交点坐标.【解答】解:(1)把(1,﹣1)代入y=a(x﹣2)2得a•(1﹣2)2=﹣1解得a=﹣1(2)抛物线解析式为y=﹣(x﹣2)2,当y=0时,﹣(x﹣2)2=0,解得x=2,所以抛物线与x轴交点坐标为(2,0);当x=0时,y=﹣(x﹣2)2=﹣4,所以抛物线与y轴交点坐标为(0,﹣4). 18.已知二次函数y=a(x﹣h)2,当x=2时有最大值,且此函数的图象经过点(1,﹣3),求此二次函数的关系式,并指出当x为何值时,y随x的增大而增大.【解答】解:根据题意得y=a(x﹣2)2,把(1,﹣3)代入得a=﹣3,所以二次函数解析式为y=﹣3(x﹣2)2,因为抛物线的对称轴为直线x=2,抛物线开口向下,所以当x<2时,y随x的增大而增大. 19.如图,抛物线的顶点M在x轴上,抛物线与y轴交于点N,且OM=ON=4,矩形ABCD的顶点A、B在抛物线上,C、D在x轴上.(1)求抛物线的解析式;(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.【解答】解:(1)∵OM=ON=4,∴M点坐标为(4,0),N点坐标为(0,4),设抛物线解析式为y=a(x﹣4)2,把N(0,4)代入得16a=4,解得a=,所以抛物线的解析式为y=(x﹣4)2=x2﹣2x+4;(2)∵点A的横坐标为t,∴DM=t﹣4,∴CD=2DM=2(t﹣4)=2t﹣8,把x=t代入y=x2﹣2x+4得y=t2﹣2t+4,∴AD=t2﹣2t+4,∴l=2(AD+CD)=2(t2﹣2t+4+2t﹣8)=t2﹣8(t>4).