所属成套资源:通用版2022年中考数学复习二轮专题训练卷(含答案)
- 2022年中考数学解答题专题21——因动点产生的等腰三角形问题(Word版,基础 培优,教师版 学生版,共4份) 试卷 0 次下载
- 2022中考解答题二轮专题 03 用不等式(组)解决问题(基础 培优,Word含答案) 试卷 0 次下载
- 2022中考数学解答题专题25 因动点产生的相切问题(Word,基础 培优,教师版 学生版)) 试卷 0 次下载
- 2022中考数学解答题专题09 两条直线相交或平行问题(Word版含答案,基础 培优,教师版 学生版)) 试卷 0 次下载
- 2022年中考数学解答题专题22——因动点产生的直角三角形问题(Word版,基础 培优,教师版 学生版,共4份) 试卷 0 次下载
2022中考数学解答题专题29 三角函数的应用(Word,基础 培优,教师版 学生版))
展开这是一份2022中考数学解答题专题29 三角函数的应用(Word,基础 培优,教师版 学生版)),文件包含专题29三角函数的应用培优老师版docx、专题29三角函数的应用基础老师版docx、专题29三角函数的应用培优学生版docx、专题29三角函数的应用基础学生版docx等4份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。
专题29 三角函数的应用(提优)
1.如图,燕尾槽的横断面是等腰梯形ABCD,现将一根木棒MN放置在该燕尾槽中,木棒与横断面在同一平面内,厚度等不计,它的底端N与点C重合,且经过点A.已知燕尾角∠B=54.5°,外口宽AD=180毫米,木棒与外口的夹角∠MAE=26.5°,求燕尾槽的里口宽BC(精确到1毫米).(参考数据:sin54.5°≈0.81,cos54.5°≈0.58,tan54.5°≈1.40,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)
2.如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.
(1)当吊臂底部A与货物的水平距离AC为5m时,求吊臂AB的长;
(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计,计算结果精确到0.1m,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
3.如图,修公路遇到一座山,于是要修一条隧道,为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过点C作直线AB的垂线l,过点B作一直线(在山的旁边经过),与l相交于D点,经测量∠ABD=135°,BD=800m,求直线l上距离D点多远的C处开挖?(1.414,精确到1米)
4.如图是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角是50度时,箱盖ADE落在AD'E'的位置(如图2),已知AD=96cm,DE=28cm,EC=42cm.
(1)求点D'到BC的距离;(结果保留整数)
(2)求E、E'两点之间的距离.(结果保留整数)
【sin50°≈0.7660,cos50°≈0.6428,tan50°≈1.1918,sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663】
5.市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=61cm,坐垫E与点B的距离BE为15cm.
(1)求坐垫E到地面的距离;
(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE'的长.
(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
6.随州市新厥水一桥(如图1),斜拉桥又称斜张桥,主要由索塔、主梁、斜拉索组成,某座斜拉桥的部分截面图如图2所示,索塔AB和斜拉索(图中只画出最短的斜拉索DE和最长的斜拉索AC)均在同一平面内,BC在水平桥面上,已知∠ABC=∠DEB=45°,∠ACB=30°,BE=6米,AB=5BD.
(1)求最短的斜拉索DE的长.
(2)求最长的斜拉索AC的长.
7.如图1,通海桥是西宁市海湖新区地标建筑,也是我省首座大规模斜拉式大桥,通海桥主塔两侧斜拉链条在夜间亮灯后犹如天鹅之翼,优雅非凡.某数学“综合与实践”小组的同学利用课余时间按照如图2所示的测量示意图对该桥进行了实地测量,测得如下数据:∠A=30°,∠B=45°,斜拉主跨度AB=260米.
(1)过点C作CD⊥AB,垂足为D,求CD的长(取1.7);
(2)若主塔斜拉链条上的LED节能灯带每米造价800元,求斜拉链条AC上灯带的总造价是多少元?
8.今年第16号台风“浪卡”已经于10月13日在海南琼海市登录.台风来袭时,某绿化带一棵笔直且垂直于地面的大树AB被刮倾斜后在C处折断倒在地上,树的顶部恰好接触到地面D处,测得∠ACD=60°,∠ADC=37°,AD=5米,求这棵大树AB的高.(结果精确到0.1米)(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,1.73)
9.如图,四边形钢板是某机器的零部件,工程人员在设计时虑到飞行的稳定性和其他保密性原则,使得边沿AD的长度是边沿BC长度的三倍,且它们所在的直线互相平行,检测员王刚参与了前期零件的基础设计,知道∠ABC=45°,边沿CD所在直线与边沿BC所在直线相交后所成的锐角为30°(即P在BC的延长线上,∠DCP=30°),经测量BC的长度为7米,求零件的边沿CD的长.(结果保留根号)
10.《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时.”如图所示,已知测速站M到公路l的距离MN为60米,一辆汽车在公路l上由东向西匀速行驶,测得此车从点A行驶到点B所用的时间为4秒,并测得∠AMN=60°,∠BMN=30°,计算此车从A到B每秒行驶多少米(结果精确到个位),并判断此车是否超过限速.(参考数据:1.732,1.414)
11.图1是一台实物投影仪,图2是它的示意图,折线B﹣A﹣O表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量:AO=6.4cm,CD=8cm,AB=40cm,BC=45cm,
(1)如图2,∠ABC=70°,BC∥OE.
①填空:∠BAO= °;
②投影探头的端点D到桌面OE的距离 .
(2)如图3,将(1)中的BC向下旋转,∠ABC=30°时,求投影探头的端点D到桌面OE的距离.(参考数据:sin70°≈0.94,cos70°≈0.34,sin40°≈0.64,cos40°≈0.77)
12.智能手机如果安装了一款测量软件“SmartMeasure”后,就可以测量物高、宽度和面积等.如图,打开软件后将手机摄像头的屏幕准星对准脚部按键,再对准头部按键,即可测量出人体的高度.其数学原理如图②所示,测量者AB与被测量者CD都垂直于地面BC.
(1)若手机显示AC=2m,AD=2.5m,∠CAD=53°,求此时CD的高.(结果保留根号)(sin53°,cos53°,tan53°)
(2)对于一般情况,试探索手机设定的测量高度的公式:设AC=a,AD=b,∠CAD=α,即用a、b、α来表示CD.(提示:sin2α+cos2α=1)
13.如图,根据道路管理规定,直线l的路段上行驶的车辆,限速60千米/时,已知测速站点M距离直线l的距离MN为30米(如图所示),现有一辆汽车匀速行驶,测得此车从A点行驶到B点所用时间为6秒,∠AMN=60°,∠BMN=45°.
(1)计算AB的长;
(2)通过计算判断此车是否超速.(1.4,1.7)
14.如图,河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=50米,某人在河岸MN的A处测的∠DAN=35°,然后沿河岸走了130米到达B处,测的∠CBN=60°,求河流的宽度CE(结果保留整数).
(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,1.7)
15.文物探测队探测出某建筑物下面有地下文物,为了准确测出文物所在的深度,他们在文物上方建筑物的一侧地面上相距20米的A、B两处,用仪器测文物C,探测线与地面的夹角分别是30°和60°,求该文物所在位置的深度(精确到0.1米).
16.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到永丰路的距离为100米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为4秒,∠APO=60°,∠BPO=45°.
(1)求A、B之间的路程;
(2)请判断此车是否超过了永丰路每小时54千米的限制速度?(参考数据:1.73)
17.在一次综合实践课上,同学们为教室窗户设计一个遮阳篷,小明同学绘制的设计图如图所示,其中AB表示窗户,且AB=2米,BCD表示直角遮阳蓬,已知当地一年中正午时刻太阳光与水平线CD的最小夹角∠PDN=18.6°,最大夹角∠MDN=64.5°
请你根据以上数据,帮助小明同学计算出遮阳篷中CD的长是多少米?(结果精确到0.1)
(参考数据:sin18.6°≈0.32,tan18.6°≈0.34,sin64.5°≈0.90,tan64.5°≈2.1)
18.如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).
(1)此时小强头部E点与地面DK相距多少厘米?
(2)此时小强头部E点是否恰好在洗漱盆AB的中点O的正上方?若是,请说明理由;若不是,他应向前还是向后移动多少厘米,使头部E点恰好是在洗漱盆AB的中点O的正上方?(sin80°≈0.98,cos80°≈0.17,1.41,结果精确到1cm)
19.某款篮球架的示意图如图所示,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2米,篮板顶端F点到篮筐点D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮筐D到地面的距离(精确到0.1米).(参考数据:cos75°≈0.26,sin75°≈0.97,tan75°≈3.73,1.73,1.41)
20.某中学广场上的旗杆AB,在某一时刻它的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为3米,落在斜坡上的影长CD为2米,AB⊥BC,同一时刻,光线与水平面的夹角为60°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(若结果中有根号,请保留根号)
相关试卷
这是一份2022年中考数学解答题专题19——因旋转产生的角度问题(Word版,基础 培优,教师版 学生版,共4份),文件包含专题19因旋转产生的角度问题基础老师版docx、专题19因旋转产生的角度问题培优老师版docx、专题19因旋转产生的角度问题培优学生版docx、专题19因旋转产生的角度问题基础学生版docx等4份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。
这是一份2022年中考数学解答题专题13——反比例综合练习(Word版,基础 培优,教师版 学生版,共4份),文件包含专题13反比例综合练习基础老师版docx、专题13反比例综合练习培优老师版docx、专题13反比例综合练习基础学生版docx、专题13反比例综合练习培优学生版docx等4份试卷配套教学资源,其中试卷共93页, 欢迎下载使用。
这是一份2022年中考数学解答题专题10—— 一次函数综合(Word版,基础 培优,教师版 学生版,共4份),文件包含专题10一次函数综合培优老师版docx、专题10一次函数综合基础老师版docx、专题10一次函数综合培优学生版docx、专题10一次函数综合基础学生版docx等4份试卷配套教学资源,其中试卷共106页, 欢迎下载使用。