终身会员
搜索
    上传资料 赚现金
    2022届辽宁抚顺新抚区中考五模数学试题含解析
    立即下载
    加入资料篮
    2022届辽宁抚顺新抚区中考五模数学试题含解析01
    2022届辽宁抚顺新抚区中考五模数学试题含解析02
    2022届辽宁抚顺新抚区中考五模数学试题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届辽宁抚顺新抚区中考五模数学试题含解析

    展开
    这是一份2022届辽宁抚顺新抚区中考五模数学试题含解析,共20页。试卷主要包含了﹣的绝对值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是(  )

    A.① B.③ C.②或④ D.①或③
    2.估计﹣1的值为(  )
    A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
    3.已知3a﹣2b=1,则代数式5﹣6a+4b的值是(  )
    A.4 B.3 C.﹣1 D.﹣3
    4.下列计算正确的是
    A.a2·a2=2a4 B.(-a2)3=-a6 C.3a2-6a2=3a2 D.(a-2)2=a2-4
    5.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为(  )
    A.8.1×106 B.8.1×105 C.81×105 D.81×104
    6.如图,在△ABC中,DE∥BC,若,则等于( )

    A. B. C. D.
    7.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果 C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有( )

    A.6个 B.7个 C.8个 D.9个
    8.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是(  )

    A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE
    9.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:
    鞋的尺码/cm
    23
    23.5
    24
    24.5
    25
    销售量/双
    1
    3
    3
    6
    2
    则这15双鞋的尺码组成的一组数据中,众数和中位数分别为(  )
    A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,24
    10.﹣的绝对值是(  )
    A.﹣ B.﹣ C. D.
    11.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )
    A.120元 B.100元 C.80元 D.60元
    12.已知a<1,点A(x1,﹣2)、B(x2,4)、C(x3,5)为反比例函数图象上的三点,则下列结论正
    确的是(  )
    A.x1>x2>x3 B.x1>x3>x2 C.x3>x1>x2 D.x2>x3>x1
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若有意义,则x 的取值范围是 .
    14.如图,、分别为△ABC的边、延长线上的点,且DE∥BC.如果,CE=16,那么AE的长为_______

    15.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.

    16.2的平方根是_________.
    17.已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为_____.

    18.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=(  )
    A.﹣1 B.4 C.﹣4 D.1
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
    20.(6分)如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),△ABC的三个顶点都在格点上,且直线m、n互相垂直.
    (1)画出△ABC关于直线n的对称图形△A′B′C′;
    (2)直线m上存在一点P,使△APB的周长最小;
    ①在直线m上作出该点P;(保留画图痕迹)
    ②△APB的周长的最小值为   .(直接写出结果)

    21.(6分)如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)

    22.(8分)如图,AB是半圆O的直径,D为弦BC的中点,延长OD交弧BC于点E,点F为OD的延长线上一点且满足∠OBC=∠OFC,求证:CF为⊙O的切线;若四边形ACFD是平行四边形,求sin∠BAD的值.

    23.(8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高CD的长.(结果精确到0.1 m)

    24.(10分)有A、B两组卡片共1张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,1.它们除了数字外没有任何区别,随机从A组抽取一张,求抽到数字为2的概率;随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?
    25.(10分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标求△PAB的面积.

    26.(12分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求证:四边形ABCD是菱形;过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.

    27.(12分)如图:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°
    求证:(1)△PAC∽△BPD;
    (2)若AC=3,BD=1,求CD的长.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.
    【详解】
    分两种情况讨论:①当点P顺时针旋转时,BP的长从增加到2,再降到0,再增加到,图象③符合;
    ②当点P逆时针旋转时,BP的长从降到0,再增加到2,再降到,图象①符合.
    故答案为①或③.
    故选D.
    【点睛】
    本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.
    2、C
    【解析】
    分析:根据被开方数越大算术平方根越大,可得答案.
    详解:∵<<,∴1<<5,∴3<﹣1<1.
    故选C.
    点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出1<<5是解题的关键,又利用了不等式的性质.
    3、B
    【解析】
    先变形,再整体代入,即可求出答案.
    【详解】
    ∵3a﹣2b=1,
    ∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,
    故选:B.
    【点睛】
    本题考查了求代数式的值,能够整体代入是解此题的关键.
    4、B
    【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.
    【详解】A. a2·a2=a4 ,故A选项错误;
    B. (-a2)3=-a6 ,正确;
    C. 3a2-6a2=-3a2 ,故C选项错误;
    D. (a-2)2=a2-4a+4,故D选项错误,
    故选B.
    【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.
    5、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    810 000=8.1×1.
    故选B.
    【点睛】
    本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    6、C
    【解析】
    试题解析::∵DE∥BC,
    ∴,
    故选C.
    考点:平行线分线段成比例.
    7、A
    【解析】
    根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.
    【详解】
    如图:分情况讨论:

    ①AB为等腰直角△ABC底边时,符合条件的C点有2个;
    ②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.
    故选:C.
    【点睛】
    本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.
    8、A
    【解析】
    由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.
    【详解】
    ∵EB=CF,
    ∴EB+BF=CF+BF,即EF=BC,
    又∵∠A=∠D,
    A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.
    B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.
    C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.
    D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误,
    故选A.
    【点睛】
    本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
    9、A
    【解析】
    【分析】根据众数和中位数的定义进行求解即可得.
    【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,
    这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,
    故选A.
    【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.
    10、C
    【解析】
    根据负数的绝对值是它的相反数,可得答案.
    【详解】
    │-│=,A错误;
    │-│=,B错误;││=,D错误;
    ││=,故选C.
    【点睛】
    本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.
    11、C
    【解析】
    解:设该商品的进价为x元/件,
    依题意得:(x+20)÷=200,解得:x=1.
    ∴该商品的进价为1元/件.
    故选C.
    12、B
    【解析】
    根据的图象上的三点,把三点代入可以得到x1=﹣ ,x1= ,x3=,在根据a的大小即可解题
    【详解】
    解:∵点A(x1,﹣1)、B(x1,4)、C(x3,5)为反比例函数图象上的三点,
    ∴x1=﹣ ,x1= ,x3= ,
    ∵a<1,
    ∴a﹣1<0,
    ∴x1>x3>x1.
    故选B.
    【点睛】
    此题主要考查一次函数图象与系数的关系,解题关键在于把三点代入,在根据a的大小来判断

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、x≥8
    【解析】

    14、1
    【解析】
    根据DE∥BC,得到,再代入AC=11-AE,则可求AE长.
    【详解】
    ∵DE∥BC,
    ∴.
    ∵,CE=11,
    ∴,解得AE=1.
    故答案为1.
    【点睛】
    本题主要考查相似三角形的判定和性质,正确写出比例式是解题的关键.
    15、1
    【解析】
    画出图形,设菱形的边长为x,根据勾股定理求出周长即可.
    【详解】

    当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,
    在Rt△ABC中,
    由勾股定理:x2=(8-x)2+22,
    解得:x=,
    ∴4x=1,
    即菱形的最大周长为1cm.
    故答案是:1.
    【点睛】
    解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.
    16、
    【解析】
    直接根据平方根的定义求解即可(需注意一个正数有两个平方根).
    【详解】
    解:2的平方根是故答案为.
    【点睛】
    本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
    17、1.
    【解析】
    连结AD,过D点作DG∥CM,∵,△AOC的面积是15,∴CD:CO=1:3,
    OG:OM=2:3,∴△ACD的面积是5,△ODF的面积是15×=,∴四边形AMGF的面积=,
    ∴△BOE的面积=△AOM的面积=×=12,∴△ADC与△BOE的面积和为5+12=1,故答案为:1.
    18、1
    【解析】
    据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b
    即可.
    【详解】
    ∵点A(a,3)与点B(﹣4,b)关于原点对称,
    ∴a=4,b=﹣3,
    ∴a+b=1,
    故选D.
    【点睛】
    考查关于原点对称的点的坐标特征,横坐标、纵坐标都互为相反数.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.
    【解析】
    (1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
    【详解】
    (1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,
    根据题意得:,
    解得:x=40,
    经检验,x=40是原分式方程的解,且符合题意,
    ∴x=×40=60,
    答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;
    (2)设安排甲队工作m天,则安排乙队工作天,
    根据题意得:7m+5×≤145,
    解得:m≥10,
    答:至少安排甲队工作10天.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.
    20、(1)详见解析;(2)①详见解析;②.
    【解析】
    (1)根据轴对称的性质,可作出△ABC关于直线n的对称图形△A′B′C′;
    (2)①作点B关于直线m的对称点B'',连接B''A与x轴的交点为点P;
    ②由△ABP的周长=AB+AP+BP=AB+AP+B''P,则当AP与PB''共线时,△APB的周长有最小值.
    【详解】
    解:(1)如图△A′B′C′为所求图形.

    (2)①如图:点P为所求点.
    ②∵△ABP的周长=AB+AP+BP=AB+AP+B''P
    ∴当AP与PB''共线时,△APB的周长有最小值.
    ∴△APB的周长的最小值AB+AB''=+3
    故答案为 +3
    【点睛】
    本题考查轴对称变换,勾股定理,最短路径问题,解题关键是熟练掌握轴对称的性质.
    21、
    【解析】
    过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形,先解Rt△PBD,得出BD=PD•tan26.6°;解Rt△CBD,得出CD=PD•tan37°;再根据CD﹣BD=BC,列出方程,求出PD=2,进而求出PE=4,AE=5,然后在△APE中利用三角函数的定义即可求解.
    【详解】
    解:如图,过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形.

    在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,
    ∴BD=PD•tan∠BPD=PD•tan26.6°.
    在Rt△CBD中,∵∠CDP=90°,∠CPD=37°,
    ∴CD=PD•tan∠CPD=PD•tan37°.
    ∵CD﹣BD=BC,∴PD•tan37°﹣PD•tan26.6°=1.
    ∴0.75PD﹣0.50PD=1,解得PD=2.
    ∴BD=PD•tan26.6°≈2×0.50=3.
    ∵OB=220,∴PE=OD=OB﹣BD=4.
    ∵OE=PD=2,∴AE=OE﹣OA=2﹣200=5.
    ∴.
    22、 (1)见解析;(2).
    【解析】
    (1)连接OC,根据等腰三角形的性质得到∠OCB=∠B,∠OCB=∠F,根据垂径定理得到OF⊥BC,根据余角的性质得到∠OCF=90°,于是得到结论;
    (2)过D作DH⊥AB于H,根据三角形的中位线的想知道的OD=AC,根据平行四边形的性质得到DF=AC,设OD=x,得到AC=DF=2x,根据射影定理得到CD=x,求得BD=x,根据勾股定理得到AD=x,于是得到结论.
    【详解】
    解:(1)连接OC,

    ∵OC=OB,
    ∴∠OCB=∠B,
    ∵∠B=∠F,
    ∴∠OCB=∠F,
    ∵D为BC的中点,
    ∴OF⊥BC,
    ∴∠F+∠FCD=90°,
    ∴∠OCB+∠FCD=90°,
    ∴∠OCF=90°,
    ∴CF为⊙O的切线;
    (2)过D作DH⊥AB于H,
    ∵AO=OB,CD=DB,
    ∴OD=AC,
    ∵四边形ACFD是平行四边形,
    ∴DF=AC,
    设OD=x,
    ∴AC=DF=2x,
    ∵∠OCF=90°,CD⊥OF,
    ∴CD2=OD•DF=2x2,
    ∴CD=x,
    ∴BD=x,
    ∴AD=x,
    ∵OD=x,BD=x,
    ∴OB=x,
    ∴DH=x,
    ∴sin∠BAD==.
    【点睛】
    本题考查了切线的判定和性质,平行四边形的性质,垂径定理,射影定理,勾股定理,三角函数的定义,正确的作出辅助线是解题的关键.
    23、路灯的高CD的长约为6.1 m.
    【解析】
    设路灯的高CD为xm,
    ∵CD⊥EC,BN⊥EC,
    ∴CD∥BN,
    ∴△ABN∽△ACD,∴,
    同理,△EAM∽△ECD,
    又∵EA=MA,∵EC=DC=xm,
    ∴,解得x=6.125≈6.1.
    ∴路灯的高CD约为6.1m.
    24、(1)P(抽到数字为2)=;(2)不公平,理由见解析.
    【解析】
    试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.
    试题解析: (1)P=;
    (2)由题意画出树状图如下:

    一共有6种情况,
    甲获胜的情况有4种,P=,
    乙获胜的情况有2种,P=,
    所以,这样的游戏规则对甲乙双方不公平.
    考点:游戏公平性;列表法与树状图法.
    25、(1)反比例函数的表达式y=,(2)点P坐标(,0), (3)S△PAB= 1.1.
    【解析】
    (1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面积.
    解:(1)把点A(1,a)代入一次函数y=﹣x+4,
    得a=﹣1+4, 
    解得a=3, 
    ∴A(1,3), 
    点A(1,3)代入反比例函数y=, 
    得k=3,  
    ∴反比例函数的表达式y=, 
    (2)把B(3,b)代入y=得,b=1
    ∴点B坐标(3,1);
    作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小, 
    ∴D(3,﹣1),
    设直线AD的解析式为y=mx+n, 
    把A,D两点代入得,, 解得m=﹣2,n=1, 
    ∴直线AD的解析式为y=﹣2x+1,
    令y=0,得x=, 
    ∴点P坐标(,0),

    (3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.
    点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.
    26、(1)详见解析;(2)1.
    【解析】
    (1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;
    (2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE==6,于是得到结论.
    【详解】
    (1)证明:∵AD∥BC,
    ∴∠ADB=∠CBD,
    ∵BD平分∠ABC,
    ∴∠ABD=∠CBD,
    ∴∠ADB=∠ABD,
    ∴AD=AB,
    ∵BA=BC,
    ∴AD=BC,
    ∴四边形ABCD是平行四边形,
    ∵BA=BC,
    ∴四边形ABCD是菱形;
    (2)解:∵DE⊥BD,

    ∴∠BDE=90°,
    ∴∠DBC+∠E=∠BDC+∠CDE=90°,
    ∵CB=CD,
    ∴∠DBC=∠BDC,
    ∴∠CDE=∠E,
    ∴CD=CE=BC,
    ∴BE=2BC=10,
    ∵BD=8,
    ∴DE==6,
    ∵四边形ABCD是菱形,
    ∴AD=AB=BC=5,
    ∴四边形ABED的周长=AD+AB+BE+DE=1.
    【点睛】
    本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.
    27、(1)见解析;(2).
    【解析】
    (1)由△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,可得∠PAB=∠PBD,∠BPD=∠PAC,从而即可证明;
    (2)根据相似三角形对应边成比例即可求出PC=PD=,再由勾股定理即可求解.
    【详解】
    证明:(1)∵△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,
    ∴∠APC+∠BPD=45°,
    又∠PAB+∠PBA=45°,∠PBA+∠PBD=45°,
    ∴∠PAB=∠PBD,∠BPD=∠PAC,
    ∵∠PCA=∠PDB,
    ∴△PAC∽△BPD;
    (2)∵,PC=PD,AC=3,BD=1
    ∴PC=PD=,
    ∴CD=.
    【点睛】
    本题考查了相似三角形的判定与性质及等腰直角三角形,属于基础题,关键是掌握相似三角形的判定方法.

    相关试卷

    2024年辽宁省抚顺市新抚区中考数学质检试卷(四)(含解析): 这是一份2024年辽宁省抚顺市新抚区中考数学质检试卷(四)(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年辽宁省抚顺市新抚区中考数学质检试卷(五)(含解析): 这是一份2023年辽宁省抚顺市新抚区中考数学质检试卷(五)(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年辽宁省抚顺市新抚区中考数学质检试卷(四)(含解析): 这是一份2023年辽宁省抚顺市新抚区中考数学质检试卷(四)(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map