![辽宁省抚顺市重点达标名校2022年中考五模数学试题含解析第1页](http://img-preview.51jiaoxi.com/2/3/13561416/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![辽宁省抚顺市重点达标名校2022年中考五模数学试题含解析第2页](http://img-preview.51jiaoxi.com/2/3/13561416/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![辽宁省抚顺市重点达标名校2022年中考五模数学试题含解析第3页](http://img-preview.51jiaoxi.com/2/3/13561416/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
辽宁省抚顺市重点达标名校2022年中考五模数学试题含解析
展开
这是一份辽宁省抚顺市重点达标名校2022年中考五模数学试题含解析,共20页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.﹣3的相反数是( )
A. B. C. D.
2.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设Pn(xn,yn),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为( )
A.1 B.3 C.﹣1 D.2019
3.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )
A.315° B.270° C.180° D.135°
4.如图已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC=130°,则∠ABE的度数为( )
A.25° B.30° C.35° D.40°
5.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )
A. B. C. D.
6.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是( )
A. B. C. D.
7.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是( )
A.AB两地相距1000千米
B.两车出发后3小时相遇
C.动车的速度为
D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地
8.如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是( )
A.3m B. m C. m D.4m
9.如图,AD是半圆O的直径,AD=12,B,C是半圆O上两点.若,则图中阴影部分的面积是( )
A.6π B.12π C.18π D.24π
10.数据4,8,4,6,3的众数和平均数分别是( )
A.5,4 B.8,5 C.6,5 D.4,5
11.﹣23的相反数是( )
A.﹣8 B.8 C.﹣6 D.6
12.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:
甲组
158
159
160
160
160
161
169
乙组
158
159
160
161
161
163
165
以下叙述错误的是( )
A.甲组同学身高的众数是160
B.乙组同学身高的中位数是161
C.甲组同学身高的平均数是161
D.两组相比,乙组同学身高的方差大
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算:-=________.
14.若x=-1, 则x2+2x+1=__________.
15.若代数式在实数范围内有意义,则x的取值范围是_______.
16.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为_____.
17.因式分解:2m2﹣8n2= .
18.如图,在两个同心圆中,三条直径把大、小圆都分成相等的六个部分,若随意向圆中投球,球落在黑色区域的概率是______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.
20.(6分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.
(1)求证:∠CBF=∠CAB. (2)若AB=5,sin∠CBF=,求BC和BF的长.
21.(6分)小明对,,,四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知超市有女工20人.所有超市女工占比统计表
超市
女工人数占比
62.5%
62.5%
50%
75%
超市共有员工多少人?超市有女工多少人?若从这些女工中随机选出一个,求正好是超市的概率;现在超市又招进男、女员工各1人,超市女工占比还是75%吗?甲同学认为是,乙同学认为不是.你认为谁说的对,并说明理由.
22.(8分)已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,连接BC,BF,CE.求证:四边形BCEF是平行四边形.
23.(8分)某汽车专卖店销售A,B两种型号的汽车.上周销售额为96万元:本周销售额为62万元,销售情况如下表:
A型汽车
B型汽车
上周
1
3
本周
2
1
(1)求每辆A型车和B型车的售价各为多少元
(2)甲公司拟向该店购买A,B两种型号的汽车共6辆,购车费不少于130万元,且不超过140万元,则有哪几种购车方案?哪种购车方案花费金额最少?
24.(10分)如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.
25.(10分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.求证:DE是⊙O的切线;若AE=6,∠D=30°,求图中阴影部分的面积.
26.(12分)已知:如图,在半径为2的扇形中,°,点C在半径OB上,AC的垂直平分线交OA于点D,交弧AB于点E,联结.
(1)若C是半径OB中点,求的正弦值;
(2)若E是弧AB的中点,求证:;
(3)联结CE,当△DCE是以CD为腰的等腰三角形时,求CD的长.
27.(12分)如图,直线y=2x+6与反比例函数y=(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.求m的值和反比例函数的表达式;直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.
【详解】
根据相反数的定义可得:-3的相反数是3.故选D.
【点睛】
本题考查相反数,题目简单,熟记定义是关键.
2、C
【解析】
根据各点横坐标数据得出规律,进而得出x +x +…+x ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果.
【详解】
解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5;
∴x1+x2+…+x7=﹣1
∵x1+x2+x3+x4=1﹣1﹣1+3=2;
x5+x6+x7+x8=3﹣3﹣3+5=2;
…
x97+x98+x99+x100=2…
∴x1+x2+…+x2016=2×(2016÷4)=1.
而x2017、x2018、x2019的值分别为:1009、﹣1009、﹣1009,
∴x2017+x2018+x2019=﹣1009,
∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,
故选C.
【点睛】
此题主要考查规律型:点的坐标,解题关键在于找到其规律
3、B
【解析】
利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答.
【详解】
如图,
∵∠1、∠2是△CDE的外角,
∴∠1=∠4+∠C,∠2=∠3+∠C,
即∠1+∠2=2∠C+(∠3+∠4),
∵∠3+∠4=180°-∠C=90°,
∴∠1+∠2=2×90°+90°=270°.
故选B.
【点睛】
此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.
4、B
【解析】
如图,连接OA,OB,OC,OE.想办法求出∠AOE即可解决问题.
【详解】
如图,连接OA,OB,OC,OE.
∵∠EBC+∠EDC=180°,∠EDC=130°,
∴∠EBC=50°,
∴∠EOC=2∠EBC=100°,
∵AB=BC=CE,
∴弧AB=弧BC=弧CE,
∴∠AOB=∠BOC=∠EOC=100°,
∴∠AOE=360°﹣3×100°=60°,
∴∠ABE=∠AOE=30°.
故选:B.
【点睛】
本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
5、B
【解析】
试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.
考点:三视图.
6、D
【解析】
根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.
【详解】
解:∵ab<0,
∴分两种情况:
(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;
(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.
故选D
【点睛】
本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.
7、C
【解析】
可以用物理的思维来解决这道题.
【详解】
未出发时,x=0,y=1000,所以两地相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+ V2)=1000,所以C选项错误;D选项正确.
【点睛】
理解转折点的含义是解决这一类题的关键.
8、B
【解析】
因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度.
【详解】
解:∵sin∠CAB=
∴∠CAB=45°.
∵∠C′AC=15°,
∴∠C′AB′=60°.
∴sin60°=,
解得:B′C′=3.
故选:B.
【点睛】
此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.
9、A
【解析】
根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.
【详解】
∵,
∴∠AOB=∠BOC=∠COD=60°.
∴阴影部分面积=.
故答案为:A.
【点睛】
本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°.
10、D
【解析】
根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可
【详解】
∵4出现了2次,出现的次数最多,
∴众数是4;
这组数据的平均数是:(4+8+4+6+3)÷5=5;
故选D.
11、B
【解析】
∵=﹣8,﹣8的相反数是8,∴的相反数是8,
故选B.
12、D
【解析】
根据众数、中位数和平均数及方差的定义逐一判断可得.
【详解】
A.甲组同学身高的众数是160,此选项正确;
B.乙组同学身高的中位数是161,此选项正确;
C.甲组同学身高的平均数是161,此选项正确;
D.甲组的方差为,乙组的方差为,甲组的方差大,此选项错误.
故选D.
【点睛】
本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、2
【解析】
试题解析:原式
故答案为
14、2
【解析】
先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.
【详解】
∵x=-1,
∴x2+2x+1=(x+1)2=(-1+1)2=2,
故答案为:2.
【点睛】
本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.
15、
【解析】
先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
解:∵在实数范围内有意义,
∴x-1≥2,
解得x≥1.
故答案为x≥1.
本题考查的是二次根式有意义的条件,即被开方数大于等于2.
16、四丈五尺
【解析】
根据同一时刻物高与影长成正比可得出结论.
【详解】
解:设竹竿的长度为x尺,
∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,
∴=,
解得x=45(尺).
故答案为:四丈五尺.
【点睛】
本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.
17、2(m+2n)(m﹣2n).
【解析】
试题分析:根据因式分解法的步骤,有公因式的首先提取公因式,可知首先提取系数的最大公约数2,进一步发现提公因式后,可以用平方差公式继续分解.
解:2m2﹣8n2,
=2(m2﹣4n2),
=2(m+2n)(m﹣2n).
考点:提公因式法与公式法的综合运用.
18、
【解析】
根据几何概率的求法:球落在黑色区域的概率就是黑色区域的面积与总面积的比值.
【详解】
解:由图可知黑色区域与白色区域的面积相等,故球落在黑色区域的概率是=.
【点睛】
本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、答案见解析
【解析】
由于AB=AC,那么∠B=∠C,而DE⊥AC,DF⊥AB可知∠BFD=∠CED=90°,又D是BC中点,可知BD=CD,利用AAS可证△BFD≌△CED,从而有DE=DF.
20、(1)证明略;(2)BC=,BF=.
【解析】
试题分析:(1)连结AE.有AB是⊙O的直径可得∠AEB=90°再有BF是⊙O的切线可得BF⊥AB,利用同角的余角相等即可证明;
(2)在Rt△ABE中有三角函数可以求出BE,又有等腰三角形的三线合一可得BC=2BE,
过点C作CG⊥AB于点G.可求出AE,再在Rt△ABE中,求出sin∠2,cos∠2.然后再在Rt△CGB中求出CG,最后证出△AGC∽△ABF有相似的性质求出BF即可.
试题解析:
(1)证明:连结AE.∵AB是⊙O的直径, ∴∠AEB=90°,∴∠1+∠2=90°.
∵BF是⊙O的切线,∴BF⊥AB, ∴∠CBF +∠2=90°.∴∠CBF =∠1.
∵AB=AC,∠AEB=90°, ∴∠1=∠CAB.
∴∠CBF=∠CAB.
(2)解:过点C作CG⊥AB于点G.∵sin∠CBF=,∠1=∠CBF, ∴sin∠1=.
∵∠AEB=90°,AB=5. ∴BE=AB·sin∠1=.
∵AB=AC,∠AEB=90°, ∴BC=2BE=.
在Rt△ABE中,由勾股定理得.
∴sin∠2=,cos∠2=.
在Rt△CBG中,可求得GC=4,GB=2. ∴AG=3.
∵GC∥BF, ∴△AGC∽△ABF. ∴,
∴.
考点:切线的性质,相似的性质,勾股定理.
21、(1)32(人),25(人);(2);(3)乙同学,见解析.
【解析】
(1)用A超市有女工人数除以女工人数占比,可求A超市共有员工多少人;先求出D超市女工所占圆心角度数,进一步得到四个中小型超市的女工人数比,从而求得B超市有女工多少人;
(2)先求出C超市有女工人数,进一步得到四个中小型超市共有女工人数,再根据概率的定义即可求解;
(3)先求出D超市有女工人数、共有员工多少人,再得到D超市又招进男、女员工各1人,D超市有女工人数、共有员工多少人,再根据概率的定义即可求解.
【详解】
解:(1)A超市共有员工:20÷62.5%=32(人),
∵360°-80°-100°-120°=60°,
∴四个超市女工人数的比为:80:100:120:60=4:5:6:3,
∴B超市有女工:20×=25(人);
(2)C超市有女工:20×=30(人).
四个超市共有女工:20×=90(人).
从这些女工中随机选出一个,正好是C超市的概率为=.
(3)乙同学.
理由:D超市有女工20×=15(人),共有员工15÷75%=20(人),
再招进男、女员工各1人,共有员工22人,其中女工是16人,女工占比为=≠75%.
【点睛】
本题考查了统计表与扇形统计图的综合,以及概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.
22、证明见解析
【解析】
首先证明△ABC≌△DEF(ASA),进而得出BC=EF,BC∥EF,进而得出答案.
【详解】
∵AB∥DE,
∴∠A=∠D,
∵AF=CD,
∴AC=DF,
在△ABC和△DEF中,
,
∴△ABC≌△DEF,
∴BC=EF,∠ACB=∠DFE,
∴BC∥EF,
∴四边形BCEF是平行四边形.
【点睛】
本题考查了全等三角形的判定与性质与平行四边形的判定,解题的关键是熟练的掌握全等三角形的判定与性质与平行四边形的判定.
23、 (1) A型车售价为18万元,B型车售价为26万元. (2) 方案一:A型车2辆,B型车4辆;方案二:A型车3辆,B型车3辆;方案二花费少.
【解析】
(1)根据题意列出二元一次方程组即可求解;(2)由题意列出不等式即可求解.
【详解】
解:(1)设A型车售价为x元,B型车售价为y元,则:
解得:
答:A型车售价为18万元,B型车售价为26万元.
(2)设A型车购买m辆,则B型车购买(6-m)辆,
∴ 130≤18m+26(6-m) ≤140,∴:2≤m≤
方案一:A型车2辆,B型车4辆;方案二:A型车3辆,B型车3辆;
∴方案二花费少
【点睛】
此题主要考查二元一次方程组与不等式的应用,解题的关键是根据题意列出方程组与不等式进行求解.
24、
【解析】
画树状图展示所有9种等可能的结果数,再找出两次抽取的牌上的数字都是偶数的结果数,然后根据概率公式求解.
【详解】
画树状图为:
共有9种等可能的结果数,其中两次抽取的牌上的数字都是偶数的结果数为2,
所以两次抽取的牌上的数字都是偶数的概率==.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
25、(1)证明见解析;(2)阴影部分的面积为.
【解析】
(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.
【详解】
解:(1)连接OC, ∵OA=OC, ∴∠OAC=∠OCA,
∵AC平分∠BAE, ∴∠OAC=∠CAE,
∴∠OCA=∠CAE, ∴OC∥AE, ∴∠OCD=∠E,
∵AE⊥DE, ∴∠E=90°, ∴∠OCD=90°, ∴OC⊥CD,
∵点C在圆O上,OC为圆O的半径, ∴CD是圆O的切线;
(2)在Rt△AED中, ∵∠D=30°,AE=6, ∴AD=2AE=12,
在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,
∴DB=OB=OC=AD=4,DO=8,
∴CD=
∴S△OCD==8, ∵∠D=30°,∠OCD=90°,
∴∠DOC=60°, ∴S扇形OBC=×π×OC2=,
∵S阴影=S△COD﹣S扇形OBC ∴S阴影=8﹣,
∴阴影部分的面积为8﹣.
26、(2);(2)详见解析;(2)当是以CD为腰的等腰三角形时,CD的长为2或.
【解析】
(2)先求出OCOB=2,设OD=x,得出CD=AD=OA﹣OD=2﹣x,根据勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出结论;
(2)先判断出,进而得出∠CBE=∠BCE,再判断出△OBE∽△EBC,即可得出结论;
(3)分两种情况:①当CD=CE时,判断出四边形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;
②当CD=DE时,判断出∠DAE=∠DEA,再判断出∠OAE=OEA,进而得出∠DEA=∠OEA,即:点D和点O重合,即可得出结论.
【详解】
(2)∵C是半径OB中点,∴OCOB=2.
∵DE是AC的垂直平分线,∴AD=CD.设OD=x,∴CD=AD=OA﹣OD=2﹣x.
在Rt△OCD中,根据勾股定理得:(2﹣x)2﹣x2=2,∴x,∴CD,∴sin∠OCD;
(2)如图2,连接AE,CE.
∵DE是AC垂直平分线,∴AE=CE.
∵E是弧AB的中点,∴,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.
连接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.
∵∠B=∠B,∴△OBE∽△EBC,∴,∴BE2=BO•BC;
(3)△DCE是以CD为腰的等腰三角形,分两种情况讨论:
①当CD=CE时.
∵DE是AC的垂直平分线,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四边形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,设菱形的边长为a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,∴4﹣a2=a2﹣(2﹣a)2,∴a=﹣22(舍)或a=;∴CD=;
②当CD=DE时.
∵DE是AC垂直平分线,∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.
连接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴点D和点O重合,此时,点C和点B重合,∴CD=2.
综上所述:当△DCE是以CD为腰的等腰三角形时,CD的长为2或.
【点睛】
本题是圆的综合题,主要考查了勾股定理,线段垂直平分线的性质,菱形的判定和性质,锐角三角函数,作出辅助线是解答本题的关键.
27、(1)m=8,反比例函数的表达式为y=;(2)当n=3时,△BMN的面积最大.
【解析】
(1)求出点A的坐标,利用待定系数法即可解决问题;
(2)构造二次函数,利用二次函数的性质即可解决问题.
【详解】
解:(1)∵直线y=2x+6经过点A(1,m),
∴m=2×1+6=8,
∴A(1,8),
∵反比例函数经过点A(1,8),
∴8=,
∴k=8,
∴反比例函数的解析式为y=.
(2)由题意,点M,N的坐标为M(,n),N(,n),
∵0<n<6,
∴<0,
∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,
∴n=3时,△BMN的面积最大.
相关试卷
这是一份2022年辽宁省抚顺市新抚区重点达标名校毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了下列各式计算正确的是,函数y=的自变量x的取值范围是等内容,欢迎下载使用。
这是一份2021-2022学年辽宁省抚顺市新抚区重点达标名校中考联考数学试卷含解析,共22页。试卷主要包含了一元二次方程的根是,下列计算正确的是,计算等内容,欢迎下载使用。
这是一份辽宁省抚顺市重点达标名校2021-2022学年中考考前最后一卷数学试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,一元二次方程=0的两个根是,如图的立体图形,从左面看可能是,下列运算不正确的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)