2022届辽宁省抚顺市新抚区重点达标名校中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.将抛物线y=﹣(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为( )
A.向下平移3个单位 B.向上平移3个单位
C.向左平移4个单位 D.向右平移4个单位
2.下列四个实数中是无理数的是( )
A.2.5 B. C.π D.1.414
3.如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为( )
A.16cm B.20cm C.24cm D.28cm
4.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是( )
A.平均数 B.众数 C.中位数 D.方差
5.在数轴上标注了四段范围,如图,则表示的点落在( )
A.段① B.段② C.段③ D.段④
6.如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且,,所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示.结合题目信息,下列说法错误的是( )
A.甲车在立交桥上共行驶8s B.从F口出比从G口出多行驶40m C.甲车从F口出,乙车从G口出 D.立交桥总长为150m
7.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是( )
A.a>0 B.a=0 C.c>0 D.c=0
8.如果数据x1,x2,…,xn的方差是3,则另一组数据2x1,2x2,…,2xn的方差是( )
A.3 B.6 C.12 D.5
9.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )
A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1
C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣1
10.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )
A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=1035
11.在数轴上表示不等式2(1﹣x)<4的解集,正确的是( )
A. B.
C. D.
12.北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为( )
A.0.72×106平方米 B.7.2×106平方米
C.72×104平方米 D.7.2×105平方米
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若,,则的值为 ________ .
14.同一个圆的内接正方形和正三角形的边心距的比为_____.
15.一组数:2,1,3,,7,,23,…,满足“从第三个数起,前两个数依次为、,紧随其后的数就是”,例如这组数中的第三个数“3”是由“”得到的,那么这组数中表示的数为______.
16.2017年7月27日上映的国产电影《战狼2》,风靡全国.剧中“犯我中华者,虽远必诛”鼓舞人心,彰显了祖国的强大实力与影响力,累计票房56.8亿元.将56.8亿元用科学记数法表示为_____元.
17.在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm,则根据题意可得方程 .
18.某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]=[m - i,n - j],并称a+b为该生的位置数.若某生的位置数为10,则当m+n取最小值时,m•n的最大值为_____________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB段为监测区,C、D为监测点(如图).已知C、D、B在同一条直线上,且,CD=400米,,.求道路AB段的长;(精确到1米)如果AB段限速为60千米/时,一辆车通过AB段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:,,)
20.(6分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值.
21.(6分)已知是上一点,.如图①,过点作的切线,与的延长线交于点,求的大小及的长;
如图②,为上一点,延长线与交于点,若,求的大小及的长.
22.(8分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:
(1)若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ;
(2)若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.
23.(8分)小王是“新星厂”的一名工人,请你阅读下列信息:
信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;
信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:
生产甲产品数(件)
生产乙产品数(件)
所用时间(分钟)
10
10
350
30
20
850
信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.
信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:
(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;
(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?
24.(10分)小敏参加答题游戏,答对最后两道单选题就顺利通关.第一道单选题有3个选项,,,第二道单选题有4个选项,,,,这两道题小敏都不会,不过小敏还有一个“求助”机会,使用“求助”可以去掉其中一道题的一个错误选项.假设第一道题的正确选项是,第二道题的正确选项是,解答下列问题:
(1)如果小敏第一道题不使用“求助”,那么她答对第一道题的概率是________;
(2)如果小敏将“求助”留在第二道题使用,用画树状图或列表的方法,求小敏顺利通关的概率;
(3)小敏选第________道题(选“一”或“二”)使用“求助”,顺利通关的可能性更大.
25.(10分)如图,在⊙O的内接四边形ABCD中,∠BCD=120°,CA平分∠BCD.
(1)求证:△ABD是等边三角形;
(2)若BD=3,求⊙O的半径.
26.(12分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.
(1)请用列表或画树状图的方法表示出上述试验所有可能结果;
(2)求一次打开锁的概率.
27.(12分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
将抛物线平移,使平移后所得抛物线经过原点,
若左右平移n个单位得到,则平移后的解析式为:,将(0,0)代入后解得:n=-3或n=1,所以向左平移1个单位或向右平移3个单位后抛物线经过原点;
若上下平移m个单位得到,则平移后的解析式为:,将(0,0)代入后解得:m=-3,所以向下平移3个单位后抛物线经过原点,
故选A.
2、C
【解析】
本题主要考查了无理数的定义.根据无理数的定义:无限不循环小数是无理数即可求解.
解:A、2.5是有理数,故选项错误;
B、是有理数,故选项错误;
C、π是无理数,故选项正确;
D、1.414是有理数,故选项错误.
故选C.
3、C
【解析】
首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.
【详解】
∵长方形ABCD中,AB∥CD,
∴∠BAC=∠DCA,
又∵∠BAC=∠EAC,
∴∠EAC=∠DCA,
∴FC=AF=25cm,
又∵长方形ABCD中,DC=AB=32cm,
∴DF=DC-FC=32-25=7cm,
在直角△ADF中,AD==24(cm).
故选C.
【点睛】
本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键.
4、D
【解析】
A. ∵原平均数是:(1+2+3+3+4+1) ÷6=3;
添加一个数据3后的平均数是:(1+2+3+3+4+1+3) ÷7=3;
∴平均数不发生变化.
B. ∵原众数是:3;
添加一个数据3后的众数是:3;
∴众数不发生变化;
C. ∵原中位数是:3;
添加一个数据3后的中位数是:3;
∴中位数不发生变化;
D. ∵原方差是:;
添加一个数据3后的方差是:;
∴方差发生了变化.
故选D.
点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键.
5、C
【解析】
试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.
∵ 3.44<4<4.5,∴1.5<4<1.91,∴1.4<<1.9,
所以应在③段上.
故选C
考点:实数与数轴的关系
6、C
【解析】
分析:结合2个图象分析即可.
详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:,故正确.
B.3段弧的长度都是:从F口出比从G口出多行驶40m,正确.
C.分析图2可知甲车从G口出,乙车从F口出,故错误.
D.立交桥总长为:故正确.
故选C.
点睛:考查图象问题,观察图象,读懂图象是解题的关键.
7、D
【解析】
试题分析:根据题意得a≠1且△=,解得且a≠1.观察四个答案,只有c=1一定满足条件,故选D.
考点:根的判别式;一元二次方程的定义.
8、C
【解析】
【分析】根据题意,数据x1,x2,…,xn的平均数设为a,则数据2x1,2x2,…,2xn的平均数为2a,再根据方差公式进行计算:即可得到答案.
【详解】根据题意,数据x1,x2,…,xn的平均数设为a,
则数据2x1,2x2,…,2xn的平均数为2a,
根据方差公式:=3,
则
=
=4×
=4×3
=12,
故选C.
【点睛】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.
9、B
【解析】
∵函数y=-2x2的顶点为(0,0),
∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),
∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,
故选B.
【点睛】
二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.
10、B
【解析】
试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.
∵全班有x名同学,
∴每名同学要送出(x-1)张;
又∵是互送照片,
∴总共送的张数应该是x(x-1)=1.
故选B
考点:由实际问题抽象出一元二次方程.
11、A
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x)<4
去括号得:2﹣2x<4
移项得:2x>﹣2,
系数化为1得:x>﹣1,
故选A.
“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
12、D
【解析】
试题分析:把一个数记成a×10n(1≤a<10,n整数位数少1)的形式,叫做科学记数法.
∴此题可记为1.2×105平方米.
考点:科学记数法
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、-.
【解析】
分析:已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.
详解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.
故答案为.
点睛:本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键.
14、
【解析】
先画出同一个圆的内接正方形和内接正三角形,设⊙O的半径为R,求出正方形的边心距和正三角形的边心距,再求出比值即可.
【详解】
设⊙O的半径为r,⊙O的内接正方形ABCD,如图,
过O作OQ⊥BC于Q,连接OB、OC,即OQ为正方形ABCD的边心距,
∵四边形BACD是正方形,⊙O是正方形ABCD的外接圆,
∴O为正方形ABCD的中心,
∴∠BOC=90°,
∵OQ⊥BC,OB=CO,
∴QC=BQ,∠COQ=∠BOQ=45°,
∴OQ=OC×cos45°=R;
设⊙O的内接正△EFG,如图,
过O作OH⊥FG于H,连接OG,即OH为正△EFG的边心距,
∵正△EFG是⊙O的外接圆,
∴∠OGF=∠EGF=30°,
∴OH=OG×sin30°=R,
∴OQ:OH=(R):(R)=:1,
故答案为:1.
【点睛】
本题考查了正多边形与圆、解直角三角形,等边三角形的性质、正方形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键.
15、-9.
【解析】
根据题中给出的运算法则按照顺序求解即可.
【详解】
解:根据题意,得:,.
故答案为:-9.
【点睛】
本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键.
16、5.68×109
【解析】
试题解析:科学记数法的表示形式为的形式,其中 为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.
56.8亿
故答案为
17、.
【解析】
试题解析:∵原计划用的时间为:
实际用的时间为:
∴可列方程为:
故答案为
18、36
【解析】
10=a+b=(m-i)+(n-j)=(m+n)-(i+j)
所以:m+n=10+i+j
当(m+n)取最小值时,(i+j)也必须最小,所以i和j都是2,这样才能(i+j)才能最小,因此:
m+n=10+2=12
也就是:当m+n=12时,m·n最大是多少?这就容易了:
m·n<=36
所以m·n的最大值就是36
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1)AB≈1395 米;(2)没有超速.
【解析】
(1)先根据tan∠ADC=2求出AC,再根据∠ABC=35°结合正弦值求解即可(2)根据速度的计算公式求解即可.
【详解】
解:(1)∵AC⊥BC,
∴∠C=90°,
∵tan∠ADC==2,
∵CD=400,
∴AC=800,
在Rt△ABC中,∵∠ABC=35°,AC=800,
∴AB==≈1395 米;
(2)∵AB=1395,
∴该车的速度==55.8km/h<60千米/时,
故没有超速.
【点睛】
此题重点考察学生对三角函数值的实际应用,熟练掌握三角函数值的实际应用是解题的关键.
20、,当x=1时,原式=﹣1.
【解析】
先化简分式,然后将x的值代入计算即可.
【详解】
解:原式=
= .
且,
∴x的整数有,
∴取,
当时,
原式.
【点睛】
本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.
21、(Ⅰ),PA=4;(Ⅱ),
【解析】
(Ⅰ)易得△OAC是等边三角形即∠AOC=60°,又由PC是○O的切线故PC⊥OC,即∠OCP=90°可得∠P的度数,由OC=4可得PA的长度
(Ⅱ)由(Ⅰ)知△OAC是等边三角形,易得∠APC=45°;过点C作CD⊥AB于点D,易得AD=AO=CO,在Rt△DOC中易得CD的长,即可求解
【详解】
解:(Ⅰ)∵AB是○O的直径,∴OA是○O的半径.
∵∠OAC=60°,OA=OC,∴△OAC是等边三角形.
∴∠AOC=60°.
∵PC是○O的切线,OC为○O的半径,
∴PC⊥OC,即∠OCP=90°∴∠P=30°.
∴PO=2CO=8.
∴PA=PO-AO=PO-CO=4.
(Ⅱ)由(Ⅰ)知△OAC是等边三角形,
∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.
∵AQ=CQ,∴∠ACQ=∠QAC=75°
∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.
∴∠APC=∠AQC+∠QAO=45°.
如图②,过点C作CD⊥AB于点D.
∵△OAC是等边三角形,CD⊥AB于点D,
∴∠DCO=30°,AD=AO=CO=2.
∵∠APC=45°,∴∠DCQ=∠APC=45°
∴PD=CD
在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=2
∴PD=CD=2
∴AP=AD+DP=2+2
【点睛】
此题主要考查圆的综合应用
22、(1);(2).
【解析】
(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;
(2)画出树状图,然后根据概率公式列式计算即可得解.
【详解】
(1)∵正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,
∴抽到的卡片既是中心对称图形又是轴对称图形的概率是;
(2)根据题意画出树状图如下:
一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,
所以,P(抽出的两张卡片的图形是中心对称图形).
【点睛】
本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
23、(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.
【解析】
(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.
(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60-x)分,分别求出甲乙两种生产多少件产品.
【详解】
(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.
由题意得:,
解这个方程组得:,
答:生产一件甲产品需要15分,生产一件乙产品需要20分.
(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60-x)分.
则生产甲种产品件,生产乙种产品件.
∴w总额=1.5×+2.8×=0.1x+×2.8=0.1x+1680-0.14x=-0.04x+1680,
又≥60,得x≥900,
由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元),
则小王该月收入最多是1644+1900=3544(元),
此时甲有=60(件),
乙有:=555(件),
答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.
【点睛】
考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.
24、(1);(2);(3)一.
【解析】
(1)直接利用概率公式求解;
(2)画树状图(用Z表示正确选项,C表示错误选项)展示所有9种等可能的结果数,找出小敏顺利通关的结果数,然后根据概率公式计算出小敏顺利通关的概率;
(3)与(2)方法一样求出小颖将“求助”留在第一道题使用,小敏顺利通关的概率,然后比较两个概率的大小可判断小敏在答第几道题时使用“求助”.
【详解】
解:(1)若小敏第一道题不使用“求助”,那么小敏答对第一道题的概率=;
故答案为;
(2)若小敏将“求助”留在第二道题使用,那么小敏顺利通关的概率是.理由如下:
画树状图为:(用Z表示正确选项,C表示错误选项)
共有9种等可能的结果数,其中小颖顺利通关的结果数为1,
所以小敏顺利通关的概率=;
(3)若小敏将“求助”留在第一道题使用,画树状图为:(用Z表示正确选项,C表示错误选项)
共有8种等可能的结果数,其中小敏顺利通关的结果数为1,所以小敏将“求助”留在第一道题使用,小敏顺利通关的概率=,
由于>,
所以建议小敏在答第一道题时使用“求助”.
【点睛】
本题考查了用画树状图的方法求概率,掌握其画法是解题的关键.
25、(1)详见解析;(2).
【解析】
(1)因为AC平分∠BCD,∠BCD=120°,根据角平分线的定义得:∠ACD=∠ACB=60°,根据同弧所对的圆周角相等,得∠ACD=∠ABD,∠ACB=∠ADB,∠ABD=∠ADB=60°.根据三个角是60°的三角形是等边三角形得△ABD是等边三角形.(2)作直径DE,连结BE,由于△ABD是等边三角形,则∠BAD=60°,由同弧所对的圆周角相等,得∠BED=∠BAD=60°.根据直径所对的圆周角是直角得,∠EBD=90°,则∠EDB=30°,进而得到DE=2BE.设EB=x,则ED=2x,根据勾股定理列方程求解即可.
【详解】
解:(1)∵∠BCD=120°,CA平分∠BCD,
∴∠ACD=∠ACB=60°,
由圆周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,
∴△ABD是等边三角形;
(2)连接OB、OD,作OH⊥BD于H,
则DH=BD=,
∠BOD=2∠BAD=120°,
∴∠DOH=60°,
在Rt△ODH中,OD==,
∴⊙O的半径为.
【点睛】
本题是一道圆的简单证明题,以圆的内接四边形为背景,圆的内接四边形的对角互补,在圆中往往通过连结直径构造直角三角形,再通过三角函数或勾股定理来求解线段的长度.
26、(1)详见解析(2)
【解析】
设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为、,其余两把钥匙分别为、,根据题意,可以画出树形图,再根据概率公式求解即可.
【详解】
(1)设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为、,其余两把钥匙分别为、,根据题意,可以画出如下树形图:
由上图可知,上述试验共有8种等可能结果;
(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.
∴P(一次打开锁)=.
【点睛】
如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
27、2.7米
【解析】
解:作BF⊥DE于点F,BG⊥AE于点G
在Rt△ADE中
∵tan∠ADE=,
∴DE="AE" ·tan∠ADE=15
∵山坡AB的坡度i=1:,AB=10
∴BG=5,AG=,
∴EF=BG=5,BF=AG+AE=+15
∵∠CBF=45°
∴CF=BF=+15
∴CD=CF+EF—DE=20—10≈20—10×1.732=2.68≈2.7
答:这块宣传牌CD的高度为2.7米.
2023年辽宁省抚顺市新抚区中考数学质检试卷(五)(含解析): 这是一份2023年辽宁省抚顺市新抚区中考数学质检试卷(五)(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年辽宁省抚顺市新抚区中考数学质检试卷(四)(含解析): 这是一份2023年辽宁省抚顺市新抚区中考数学质检试卷(四)(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年辽宁省抚顺市新抚区中考数学三模试卷(含解析): 这是一份2023年辽宁省抚顺市新抚区中考数学三模试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。