2022届辽宁抚顺新抚区重点名校中考数学模拟预测试卷含解析
展开这是一份2022届辽宁抚顺新抚区重点名校中考数学模拟预测试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列事件中,必然事件是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.的相反数是 ( )
A.6 B.-6 C. D.
2.下列运算正确的是( )
A.x•x4=x5 B.x6÷x3=x2 C.3x2﹣x2=3 D.(2x2)3=6x6
3.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是( )
A.x1≠x2 B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<0
4.如图,是的直径,弦,垂足为点,点是上的任意一点,延长交的延长线于点,连接.若,则等于( )
A. B. C. D.
5.下列事件中,必然事件是( )
A.抛掷一枚硬币,正面朝上
B.打开电视,正在播放广告
C.体育课上,小刚跑完1000米所用时间为1分钟
D.袋中只有4个球,且都是红球,任意摸出一球是红球
6.如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是( )
A.点M B.点N C.点P D.点Q
7.在平面直角坐标系中,将点 P (﹣4,2)绕原点O 顺时针旋转 90°,则其对应点Q 的坐标为( )
A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)
8.如图是二次函数y =ax2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b2–4ac<0,其中正确的有( )
A.1个 B.2个 C.3个 D.4
9.如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?( )
A.1 B.2 C.2﹣2 D.4﹣2
10.把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是( )
A.y=﹣2x2+1 B.y=﹣2x2﹣1 C.y=﹣2(x+1)2 D.y=﹣2(x﹣1)2
二、填空题(共7小题,每小题3分,满分21分)
11.关于x的不等式组的整数解有4个,那么a的取值范围( )
A.4<a<6 B.4≤a<6 C.4<a≤6 D.2<a≤4
12.当a<0,b>0时.化简:=_____.
13.关于x的不等式组有2个整数解,则a的取值范围是____________.
14.观察下列的“蜂窝图”按照它呈现的规律第n个图案中的“”的个数是_____(用含n的代数式表示)
15.的相反数是______,的倒数是______.
16.如图,已知,点为边中点,点在线段上运动,点在线段上运动,连接,则周长的最小值为______.
17.如图,中,,则 __________.
三、解答题(共7小题,满分69分)
18.(10分)已知△ABC 中,AD 是∠BAC 的平分线,且 AD=AB,过点 C 作 AD 的垂线,交 AD 的延长线于点 H.
(1)如图 1,若∠BAC=60°.
①直接写出∠B 和∠ACB 的度数;
②若 AB=2,求 AC 和 AH 的长;
(2)如图 2,用等式表示线段 AH 与 AB+AC 之间的数量关系,并证明.
19.(5分)某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长40m.
(1)若养鸡场面积为168m2,求鸡场垂直于墙的一边AB的长.
(2)请问应怎样围才能使养鸡场面积最大?最大的面积是多少?
20.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).
(1)求m的值和一次函数的解析式;
(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;
(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.
21.(10分)某通讯公司推出了A,B两种上宽带网的收费方式(详情见下表)
设月上网时间为x h(x为非负整数),请根据表中提供的信息回答下列问题
(1)设方案A的收费金额为y1元,方案B的收费金额为y2元,分别写出y1,y2关于x的函数关系式;
(2)当35<x<50时,选取哪种方式能节省上网费,请说明理由
22.(10分)某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.
请根据图表信息回答下列问题:
视力
频数(人)
频率
4.0≤x<4.3
20
0.1
4.3≤x<4.6
40
0.2
4.6≤x<4.9
70
0.35
4.9≤x<5.2
a
0.3
5.2≤x<5.5
10
b
(1)本次调查的样本为 ,样本容量为 ;在频数分布表中,a= ,b= ,并将频数分布直方图补充完整;若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?
23.(12分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:
项目
选手
服装
普通话
主题
演讲技巧
李明
85
70
80
85
张华
90
75
75
80
结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.
24.(14分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:
方案一:买一件甲种商品就赠送一件乙种商品;
方案二:按购买金额打八折付款.
某公司为奖励员工,购买了甲种商品20件,乙种商品x()件.
(1)分别直接写出优惠方案一购买费用(元)、优惠方案二购买费用(元)与所买乙种商品x(件)之间的函数关系式;
(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据相反数的定义解答即可.
【详解】
根据相反数的定义有:的相反数是.
故选D.
【点睛】
本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.
2、A
【解析】
根据同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方与积的乘方运算法则逐一计算作出判断:
A、x•x4=x5,原式计算正确,故本选项正确;
B、x6÷x3=x3,原式计算错误,故本选项错误;
C、3x2﹣x2=2x2,原式计算错误,故本选项错误;
D、(2x2)3=8x,原式计算错误,故本选项错误.
故选A.
3、A
【解析】
分析:A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;
B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;
C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;
D、由x1•x2=﹣2,可得出x1<0,x2>0,结论D错误.
综上即可得出结论.
详解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,
∴x1≠x2,结论A正确;
B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,
∴x1+x2=a,
∵a的值不确定,
∴B结论不一定正确;
C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,
∴x1•x2=﹣2,结论C错误;
D、∵x1•x2=﹣2,
∴x1<0,x2>0,结论D错误.
故选A.
点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
4、B
【解析】
连接BD,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可.
【详解】
连接BD,
∵AB是直径,∠BAD=25°,
∴∠ABD=90°-25°=65°,
∴∠AGD=∠ABD=65°,
故选B.
【点睛】
此题考查圆周角定理,关键是利用直径得出∠ABD=65°.
5、D
【解析】
试题解析:A. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;
B. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;
C. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;
D. 袋中只有4个球,且都是红球,任意摸出一球是红球,是必然事件,符合题意.
故选D.
点睛:事件分为确定事件和不确定事件.
必然事件和不可能事件叫做确定事件.
6、D
【解析】
∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,
∴原点在点M与N之间,
∴这四个数中绝对值最大的数对应的点是点Q.
故选D.
7、A
【解析】
首先求出∠MPO=∠QON,利用AAS证明△PMO≌△ONQ,即可得到PM=ON,OM=QN,进而求出Q点坐标.
【详解】
作图如下,
∵∠MPO+∠POM=90°,∠QON+∠POM=90°,
∴∠MPO=∠QON,
在△PMO和△ONQ中,
∵ ,
∴△PMO≌△ONQ,
∴PM=ON,OM=QN,
∵P点坐标为(﹣4,2),
∴Q点坐标为(2,4),
故选A.
【点睛】
此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等.
8、B
【解析】
由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
①抛物线与y轴交于负半轴,则c<1,故①正确;
②对称轴x1,则2a+b=1.故②正确;
③由图可知:当x=1时,y=a+b+c<1.故③错误;
④由图可知:抛物线与x轴有两个不同的交点,则b2﹣4ac>1.故④错误.
综上所述:正确的结论有2个.
故选B.
【点睛】
本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
9、C
【解析】
先判断出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面积的两种算法即可求出PG,然后计算出PQ即可.
【详解】
解:如图,连接PF,QF,PC,QC
∵P、Q两点分别为△ACF、△CEF的内心,
∴PF是∠AFC的角平分线,FQ是∠CFE的角平分线,
∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,
∴∠PFC=∠QFC=30°,
同理,∠PCF=∠QCF
∴PQ⊥CF,
∴△PQF是等边三角形,
∴PQ=2PG;
易得△ACF≌△ECF,且内角是30º,60º,90º的三角形,
∴AC=2,AF=2,CF=2AF=4,
∴S△ACF=AF×AC=×2×2=2,
过点P作PM⊥AF,PN⊥AC,PQ交CF于G,
∵点P是△ACF的内心,
∴PM=PN=PG,
∴S△ACF=S△PAF+S△PAC+S△PCF
=AF×PM+AC×PN+CF×PG
=×2×PG+×2×PG+×4×PG
=(1++2)PG
=(3+)PG
=2,
∴PG==,
∴PQ=2PG=2()=2-2.
故选C.
【点睛】
本题是三角形的内切圆与内心,主要考查了三角形的内心的特点,三角形的全等,解本题的关键是知道三角形的内心的意义.
10、A
【解析】
根据“上加下减”的原则进行解答即可.
【详解】
解:由“上加下减”的原则可知,把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是:y=﹣2x2+1.
故选A.
【点睛】
本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、C
【解析】
分析:先根据一元一次不等式组解出x的取值,再根据不等式组
的整数解有4个,求出实数a的取值范围.
详解:
解不等式①,得
解不等式②,得
原不等式组的解集为
∵只有4个整数解,
∴整数解为:
故选C.
点睛:考查解一元一次不等式组的整数解,分别解不等式,写出不等式的解题,根据不等式整数解的个数,确定a的取值范围.
12、
【解析】
分析:按照二次根式的相关运算法则和性质进行计算即可.
详解:
∵,
∴.
故答案为:.
点睛:熟记二次根式的以下性质是解答本题的关键:(1);(2)=.
13、8⩽a<13;
【解析】
首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
【详解】
解不等式3x−5>1,得:x>2,
解不等式5x−a⩽12,得:x⩽ ,
∵不等式组有2个整数解,
∴其整数解为3和4,
则4⩽<5,
解得:8⩽a<13,
故答案为:8⩽a<13
【点睛】
此题考查一元一次不等式组的整数解,掌握运算法则是解题关键
14、3n+1
【解析】
根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律.
【详解】
解:由题意可知:每1个都比前一个多出了3个“”,
∴第n个图案中共有“”为:4+3(n﹣1)=3n+1
故答案为:3n+1.
【点睛】
本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型.
15、2,
【解析】
试题分析:根据相反数和倒数的定义分别进行求解,﹣2的相反数是2,
﹣2的倒数是.
考点:倒数;相反数.
16、
【解析】
作梯形ABCD关于AB的轴对称图形,将BC'绕点C'逆时针旋转120°,则有GE'=FE',P与Q是关于AB的对称点,当点F'、G、P三点在一条直线上时,△FEP的周长最小即为F'G+GE'+E'P,此时点P与点M重合,F'M为所求长度;过点F'作F'H⊥BC',M是BC中点,则Q是BC'中点,由已知条件∠B=90°,∠C=60°,BC=2AD=4,可得C'Q=F'C'=2,∠F'C'H=60°,所以F'H=,HC'=1,在Rt△MF'H中,即可求得F'M.
【详解】
作梯形ABCD关于AB的轴对称图形,
作F关于AB的对称点G,P关于AB的对称点Q,
∴PF=GQ,
将BC'绕点C'逆时针旋转120°,Q点关于C'G的对应点为F',
∴GF'=GQ,
设F'M交AB于点E',
∵F关于AB的对称点为G,
∴GE'=FE',
∴当点F'、G、P三点在一条直线上时,△FEP的周长最小即为F'G+GE'+E'P,此时点P与点M重合,
∴F'M为所求长度;
过点F'作F'H⊥BC',
∵M是BC中点,
∴Q是BC'中点,
∵∠B=90°,∠C=60°,BC=2AD=4,
∴C'Q=F'C'=2,∠F'C'H=60°,
∴F'H=,HC'=1,
∴MH=7,
在Rt△MF'H中,F'M;
∴△FEP的周长最小值为.
故答案为:.
【点睛】
本题考查了动点问题的最短距离,涉及的知识点有:勾股定理,含30度角直角三角形的性质,能够通过轴对称和旋转,将三角形的三条边转化为线段的长是解题的关键.
17、17
【解析】
∵Rt△ABC中,∠C=90°,∴tanA= ,
∵,∴AC=8,
∴AB= =17,
故答案为17.
三、解答题(共7小题,满分69分)
18、(1)①45°,②;(2)线段 AH 与 AB+AC 之间的数量关系:2AH=AB+AC.证明见解析.
【解析】
(1)①先根据角平分线的定义可得∠BAD=∠CAD=30°,由等腰三角形的性质得∠B=75°,最后利用三角形内角和可得∠ACB=45°;②如图 1,作高线 DE,在 Rt△ADE 中,由∠DAC=30°,AB=AD=2 可得 DE=1,AE=, 在 Rt△CDE 中,由∠ACD=45°,DE=1,可得 EC=1,AC= +1,同理可得 AH 的长;(2)如图 2,延长 AB 和 CH 交于点 F,取 BF 的中点 G,连接 GH,易证△ACH≌△AFH,则 AC=AF,HC=HF, 根据平行线的性质和等腰三角形的性质可得AG=AH,再由线段的和可得结论.
【详解】
(1)①∵AD 平分∠BAC,∠BAC=60°,
∴∠BAD=∠CAD=30°,
∵AB=AD,
∴∠B==75°,
∴∠ACB=180°﹣60°﹣75°=45°;
②如图 1,过 D 作 DE⊥AC 交 AC 于点 E,
在 Rt△ADE 中,∵∠DAC=30°,AB=AD=2,
∴DE=1,AE=,
在 Rt△CDE 中,∵∠ACD=45°,DE=1,
∴EC=1,
∴AC=+1,
在 Rt△ACH 中,∵∠DAC=30°,
∴CH=AC=
∴AH==;
(2)线段 AH 与 AB+AC 之间的数量关系:2AH=AB+AC.
证明:如图 2,延长 AB 和 CH 交于点 F,取 BF 的中点 G,连接 GH.
易证△ACH≌△AFH,
∴AC=AF,HC=HF,
∴GH∥BC,
∵AB=AD,
∴∠ABD=∠ADB,
∴∠AGH=∠AHG,
∴AG=AH,
∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.
【点睛】
本题是三角形的综合题,难度适中,考查了三角形全等的性质和判定、等腰三角形的性质和判定、勾股定理、三角形的中位线定理等知识,熟练掌握这些性质是本题的关键,第(2)问构建等腰三角形是关键.
19、(1)鸡场垂直于墙的一边AB的长为2米;(1)鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值100米1.
【解析】
试题分析:(1)首先设鸡场垂直于墙的一边AB的长为x 米,然后根据题意可得方程x(40-1x)=168,即可求得x的值,又由墙长15m,可得x=2,则问题得解;
(1)设围成养鸡场面积为S,由题意可得S与x的函数关系式,由二次函数最大值的求解方法即可求得答案;
解:(1)设鸡场垂直于墙的一边AB的长为x米,
则 x(40﹣1x)=168,
整理得:x1﹣10x+84=0,
解得:x1=2,x1=6,
∵墙长15m,
∴0≤BC≤15,即0≤40﹣1x≤15,
解得:7.5≤x≤10,
∴x=2.
答:鸡场垂直于墙的一边AB的长为2米.
(1)围成养鸡场面积为S米1,
则S=x(40﹣1x)
=﹣1x1+40x
=﹣1(x1﹣10x)
=﹣1(x1﹣10x+101)+1×101
=﹣1(x﹣10)1+100,
∵﹣1(x﹣10)1≤0,
∴当x=10时,S有最大值100.
即鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值100米1.
点睛:此题考查了一元二次方程与二次函数的实际应用.解题的关键是理解题意,并根据题意列出一元二次方程与二次函数解析式.
20、(1)y=1x﹣1(1)1(3)x>1
【解析】
试题分析:(1)先把A(m,1)代入正比例函数解析式可计算出m=1,然后把A(1,1)代入y=kx﹣k计算出k的值,从而得到一次函数解析式为y=1x﹣1;
(1)先确定B点坐标,然后根据三角形面积公式计算;
(3)观察函数图象得到当x>1时,直线y=kx﹣k都在y=x的上方,即函数y=kx﹣k的值大于函数y=x的值.
试题解析:(1)把A(m,1)代入y=x得m=1,则点A的坐标为(1,1),
把A(1,1)代入y=kx﹣k得1k﹣k=1,解得k=1,
所以一次函数解析式为y=1x﹣1;
(1)把x=0代入y=1x﹣1得y=﹣1,则B点坐标为(0,﹣1),
所以S△AOB=×1×1=1;
(3)自变量x的取值范围是x>1.
考点:两条直线相交或平行问题
21、(1),;(2)当35<x<1时,选择B方式能节省上网费,见解析.
【解析】
(1)根据两种方式的收费标准,进行分类讨论即可求解;
(2)当35<x<1时,计算出y1-y2的值,即可得出答案.
【详解】
解:(1)由题意得:;
即;
;
即;
(2)选择B方式能节省上网费
当35<x<1时,有y1=3x-45,y2=1.
:y1-y2=3x-45-1=3x-2.记y=3x-2
因为3>4,有y随x的增大而增大
当x=35时,y=3.
所以当35<x<1时,有y>3,即y>4.
所以当35<x<1时,选择B方式能节省上网费
【点睛】
此题考查了一次函数的应用,注意根据图表得出解题需要的信息,难度一般,正确理解收费标准求出函数解析式是解题的关键.
22、200名初中毕业生的视力情况 200 60 0.05
【解析】
(1)根据视力在4.0≤x<4.3范围内的频数除以频率即可求得样本容量;
(2)根据样本容量,根据其对应的已知频率或频数即可求得a,b的值;
(3)求出样本中视力正常所占百分比乘以5000即可得解.
【详解】
(1)根据题意得:20÷0.1=200,即本次调查的样本容量为200,
故答案为200;
(2)a=200×0.3=60,b=10÷200=0.05,
补全频数分布图,如图所示,
故答案为60,0.05;
(3)根据题意得:5000×=3500(人),
则全区初中毕业生中视力正常的学生有估计有3500人.
23、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.
【解析】
(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;
(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;
(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.
【详解】
(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,
普通话项目对应扇形的圆心角是:360°×20%=72°;
(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5;
(3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5,
张华得分为:90×10%+75×20%+75×30%+80×40%=78.5,
∵80.5>78.5,
∴李明的演讲成绩好,
故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.
【点睛】
本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键.
24、(1)y1=80x+4400;y2=64x+4800;(2)当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.
【解析】
(1)根据方案即可列出函数关系式;
(2)根据题意建立w与m之间的关系式,再根据一次函数的增减性即可得出答案.
解:(1) 得:;
得:;
(2)
,
因为w是m的一次函数,k=-4<0,
所以w随的增加而减小,m当m=20时,w取得最小值.
即按照方案一购买20件甲种商品;按照方案二购买20件乙种商品.
相关试卷
这是一份09,2023年辽宁省抚顺市新抚区中考数学模拟预测题(四),共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年辽宁省抚顺市新抚区中考数学质检试卷(五)(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年辽宁省抚顺市新抚区中考数学质检试卷(四)(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。