初中数学苏科版七年级下册12.3 互逆命题多媒体教学ppt课件
展开这是一份初中数学苏科版七年级下册12.3 互逆命题多媒体教学ppt课件,共12页。PPT课件主要包含了问题情境,试一试,练一练,拓展延伸,课后作业等内容,欢迎下载使用。
12.3 互逆命题(1)
两直线平行,同位角相等.
同位角相等,两直线平行.
如果 a+b>0 ,那么 a>0,b>0
如果 a >0,b >0 ,那么 a+b>0
两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题. 其中一个命题是另一个命题的逆命题.
1.下列各组命题是否是互逆命题: (1)“正方形的四个角都是直角”与“四个角都是直角的四边形是正方形”; (2)“等于同一个角的两个角相等”与“如果两个角都等于同一个角,那么这两个角相等”; (3)“对顶角相等”与“如果两个角相等,那么这两个角是对顶角”; (4)“同位角相等,两直线平行”与“同位角不相等,两直线不平行” .
2 .说出下列命题的逆命题,并与同学交流.(1)如果a2=b2,那么a=b;(2)如果两个角是对顶角,那么它们的平分线组成一个平角;(3)末位数字是5的数,能被5整除;(4)锐角与钝角互为补角.
逆命题:如果a=b,那么a2=b2 .
逆命题:如果两个角的平分线组成一个平角,那么这两个角是对顶角.
逆命题:能被5整除的数的末位数字是5.
逆命题:互为补角的两个角一个是锐角一个是钝角.
举反例说明下列命题是假命题:(1)如果|a|=|b| ,那么a=b;(2)任何数的平方大于0;(3)两个锐角的和是钝角;(4)如果一点到线段两端的距离相等,那么这点是这条线段的中点.
第一次数学危机 公元前五世纪,毕达哥拉斯学派认为“万物皆是数”——任何数都可以表示为整数或整数的比.他的门徒希伯索斯发现一个反例:当正方形边长为整数1时,对角线的长就无法用整数表示!从而引发第一次数学危机.希伯索斯因为没有按毕达哥拉斯“保持沉默”的要求,把这个问题公之于众,结果被投尸大海,葬身鱼腹,造成历史上震惊数学界的无理数发现惨案.
著名的反例 公元1640年,法国著名数学家费尔马发现:220+1=3,221+1=5, 222+1=17, 223+1=257, 224+1=65537…… 而3、5、17、257、65537都是质数,于是费尔马猜想:对于一切自然数n,22n+1都是质数,可是,到了1732年,数学家欧拉发现:225+1=4294967297=641×6700417.这说明了22n+1是一个合数,从而否定了费尔马的猜想.
【小结】 本节课你学会了什么?你有什么收获?
课本P161习题12.3 第1、2题.
7.1 探索直线平行的条件(1)
相关课件
这是一份苏科版七年级下册12.3 互逆命题教学ppt课件,共23页。PPT课件主要包含了知识回顾,小游戏,观察与思考,试一试,不一定,拓展延伸,练一练,相等的角是对顶角,a10b-2等内容,欢迎下载使用。
这是一份初中数学苏科版七年级下册12.3 互逆命题集体备课ppt课件,共20页。PPT课件主要包含了相等的角是对顶角,不一定,小组互动等内容,欢迎下载使用。
这是一份苏科版七年级下册12.3 互逆命题多媒体教学课件ppt,共9页。PPT课件主要包含了复习回顾,归纳总结,例题讲解,探究思考等内容,欢迎下载使用。