![沪科版数学九年级上册 21.1 二次函数(7)(课件)01](http://img-preview.51jiaoxi.com/2/3/12915438/0/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![沪科版数学九年级上册 21.1 二次函数(7)(课件)02](http://img-preview.51jiaoxi.com/2/3/12915438/0/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![沪科版数学九年级上册 21.1 二次函数(7)(课件)03](http://img-preview.51jiaoxi.com/2/3/12915438/0/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![沪科版数学九年级上册 21.1 二次函数(7)(课件)04](http://img-preview.51jiaoxi.com/2/3/12915438/0/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![沪科版数学九年级上册 21.1 二次函数(7)(课件)05](http://img-preview.51jiaoxi.com/2/3/12915438/0/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![沪科版数学九年级上册 21.1 二次函数(7)(课件)06](http://img-preview.51jiaoxi.com/2/3/12915438/0/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![沪科版数学九年级上册 21.1 二次函数(7)(课件)07](http://img-preview.51jiaoxi.com/2/3/12915438/0/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![沪科版数学九年级上册 21.1 二次函数(7)(课件)08](http://img-preview.51jiaoxi.com/2/3/12915438/0/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
初中数学沪科版九年级上册21.1 二次函数多媒体教学课件ppt
展开已知二次函数的图象经过A(-1,6),B(1,2),C(2,3)三点,求这个二次函数的解析式;求出A、B、C关于x轴对称的点的坐标并求出经过这三点的二次函数解析式;求出A、B、C关于y轴对称的点的坐标并求出经过这三点的二次函数解析式;在同一坐标系内画出这三个二次函数图象;分析这三条抛物线的对称关系,并观察它们的表达式的区别与联系,你发现了什么?
已知函数y=ax2+bx+c的图象是以点(2,3)为顶点的抛物线,并且这个图象通过点(3,1),求这个函数的解析式。(要求分别用一般式和顶点式去完成,对比两种方法)已知某二次函数当x=1时,有最大值-6,且图象经过点(2,-8),求此二次函数的解析式。
用待定系数法求二次函数的解析式,什么时候使用顶点式y=a(x-m)2+n比较方便?知道顶点坐标或函数的最值时比较顶点式和一般式的优劣一般式:通用,但计算量大顶点式:简单,但有条件限制使用顶点式需要多少个条件?顶点坐标再加上一个其它点的坐标;对称轴再加上两个其它点的坐标;其实,顶点式同样需要三个条件才能求。
已知二次函数的图象与x轴交于(-2,0)和(1,0)两点,又通过点(3,-5),求这个二次函数的解析式。当x为何值时,函数有最值?最值是多少?已知二次函数的图象与x轴交于A(-2,0),B(3,0)两点,且函数有最大值2。求二次函数的解析式;设此二次函数图象顶点为P,求△ABP的面积
用待定系数法求二次函数的解析式,什么时候使用顶点式y=a(x-x1) (x-x2)比较方便?知道二次函数图象和x轴的两个交点的坐标时使用交点式需要多少个条件?两个交点坐标再加上一个其它条件其实,交点式同样需要三个条件才能求求函数最值点和最值的若干方法:直接代入顶点坐标公式配方成顶点式借助图象的顶点在对称轴上这一特性,结合和x轴两个交点坐标求。
已知二次函数的图象与x轴交于(-2,0)和(1,0)两点,又通过点(3,-5),求这个二次函数的解析式。当x为何值时,函数有最值?最值是多少?求函数最值点和最值的若干方法:直接代入顶点坐标公式配方成顶点式借助图象的顶点在对称轴上这一特性,结合和x轴两个交点坐标求。
一般式:y=ax2+bx+c顶点式:y=a(x-m)2+n交点式:y=a(x-x1) (x-x2)已知二次函数y=ax2+bx+c的图象与x轴的一个交点坐标是(8,0),顶点是(6,-12),求这个二次函数的解析式。(分别用三种办法来求)
专题二: 数形结合法
简单的应用(学会画图)
已知二次函数的图象与x轴交于A(-2,0),B(3,0)两点,且函数有最大值2。求二次函数的解析式;设此二次函数图象顶点为P,求△ABP的面积在直角坐标系中,点A在y轴的正半轴上,点B在x轴的负半轴上,点C在x轴的正半轴上,AC=5,BC=4,cs∠ACB=3/5。求A、B、C三点坐标;若二次函数图象经过A、B、C三点,求其解析式;求二次函数的对称轴和顶点坐标
专题三: 二次函数的最值应用题
求函数y=(m+1)x2-2(m+1)x-m的最值。其中m为常数且m≠-1。
最值应用题——面积最大
某工厂为了存放材料,需要围一个周长160米的矩形场地,问矩形的长和宽各取多少米,才能使存放场地的面积最大。窗的形状是矩形上面加一个半圆。窗的周长等于6cm,要使窗能透过最多的光线,它的尺寸应该如何设计?
用一块宽为1.2m的长方形铁板弯起两边做一个水槽,水槽的横断面为底角120º的等腰梯形。要使水槽的横断面积最大,它的侧面AB应该是多长?
最值应用题——路程问题
快艇和轮船分别从A地和C地同时出发,各沿着所指方向航行(如图所示),快艇和轮船的速度分别是每小时40km和每小时16km。已知AC=145km,经过多少时间,快艇和轮船之间的距离最短?(图中AC⊥CD)
最值应用题——销售问题
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天盈利最多?
某商场以每件42元的价钱购进一种服装,根据试销得知这种服装每天的销售量t(件)与每件的销售价x(元/件)可看成是一次函数关系:t=-3x+204。写出商场卖这种服装每天销售利润y(元)与每件的销售价x(元)间的函数关系式;通过对所得函数关系式进行配方,指出商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适?最大利润为多少?
最值应用题——运动观点
在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/秒的速度移动,同时,点Q从点B出发沿BC边向点C以2cm/秒的速度移动。如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:运动开始后第几秒时, △PBQ的面积等于8cm2设运动开始后第t秒时, 五边形APQCD的面积为Scm2, 写出S与t的函数关系式, 并指出自变量t的取值范围;t为何值时S最小?求出S的最小值。
在△ABC中,BC=2,BC边上的高AD=1,P是BC上任一点,PE∥AB交AC于E,PF∥AC交AB于F。设BP=x,将S△PEF用x表示;当P在BC边上什么位置时,S值最大。
在取值范围内的函数最值
设未知数(确定自变量和函数);找等量关系,列出函数关系式;化简,整理成标准形式(一次函数、二次函数等);求自变量取值范围;利用函数知识,求解(通常是最值问题);写出结论。
初中数学沪科版九年级上册21.1 二次函数试讲课ppt课件: 这是一份初中数学沪科版九年级上册21.1 二次函数试讲课ppt课件,共18页。PPT课件主要包含了学习目标,新课导入,新课讲解,课堂小结,当堂小练,a≠1等内容,欢迎下载使用。
初中数学第21章 二次函数与反比例函数21.1 二次函数多媒体教学课件ppt: 这是一份初中数学第21章 二次函数与反比例函数21.1 二次函数多媒体教学课件ppt,共20页。PPT课件主要包含了Sπr2,Sa+22,n-3,y=-x2+x,结束寄语,生活是数学的源泉,探索是数学的生命线等内容,欢迎下载使用。
九年级上册21.1 二次函数说课ppt课件: 这是一份九年级上册21.1 二次函数说课ppt课件,共17页。PPT课件主要包含了温故知新,1二次函数,先化简后判断,开动脑筋,能力提升,你追我赶做练习等内容,欢迎下载使用。