专题07 圆的性质与证明-2022年决胜中考数学考前抢分冲刺(全国通用)
展开专题07 圆的性质与证明 (原卷版)
圆的问题,常用小技巧:
1. 遇到弦时(解决有关弦的问题时) 简记:圆中弦,垂径连,垂径定理很好办。
常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。
作用:①利用垂径定理;
②利用圆心角及其所对的弧、弦和弦心距之间的关系;
③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。
2. 遇到有直径时。 简记:圆中直径,可得直角。
常常添加(画)直径所对的圆周角。
作用:利用圆周角的性质,得到直角或直角三角形。
3. 遇到有切线时 简记:切点半径连,垂直必出现。
(1)常常添加过切点的半径(连结圆心和切点)
作用:利用切线的性质定理可得到直角或直角三角形。
(2)常常添加连结圆上一点和切点
作用:可构成弦切角,从而利用弦切角定理。
4. 遇到证明某一直线是圆的切线时。
(1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段,再证垂足到圆心的距离等于半径。
(2)若直线过圆上的某一点,则连结这点和圆心(即作半径),再证其与直线垂直。
5. 遇到两相交切线时(切线长)
常常连结切点和圆心、连结圆心和圆外的一点、连结两切点。
作用:据切线长及其它性质,可得到:①角、线段的等量关系;②垂直关系;③全等、相似三角形。
6. 遇到三角形的内切圆时. 简记:内切圆,角平分,三边垂线好判断。
连结内心到各三角形顶点,或过内心作三角形各边的垂线段。
作用:利用内心的性质,可得:
① 内心到三角形三个顶点的连线是三角形的角平分线;
② 内心到三角形三条边的距离相等。
7. 遇到三角形的外接圆时. 简记:外接圆,中垂线,三个顶点线段连。
如果三角形是直角三角形,那么它的外接圆的直径就是直角三角形的斜边.
如果三角形不是直角三角形
一.选择题
1.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为( )
A.1 B. C.21 D.2
2.如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC的长为( )
A.4 B.4 C. D.2
3.如图,在矩形ABCD中,AB=6,AD=8,点O在对角线BD上,以OB为半径作⊙O交BC于点E,连接DE,若DE是⊙O的切线,此时⊙O的半径为( )
A.2 B. C. D.
4.如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转i个45°,得到正六边形OAiBi∁iDiEi,则正六边形OAiBi∁iDiEi(i=2021)的顶点∁i的坐标是( )
A.(1,) B.(1,) C.(1,﹣2) D.(2,1)
二.填空题
5.如图,在矩形ABCD中,AB=4,BC=3,E,F分别为AB,CD边的中点.动点P从点E出发沿EA向点A运动,同时,动点Q从点F出发沿FC向点C运动,连接PQ,过点B作BH⊥PQ于点H,连接DH.若点P的速度是点Q的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为 ,线段DH长度的最小值为 .
6.△ABC内接于⊙O,AB为⊙O的直径,将△ABC绕点C旋转到△EDC,点E在⊙O上,已知AE=2,tanD=3,则AB= .
7.如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则DE的长是 .
8.在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是 .
9.如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,若∠BAC=36°,则∠P的度数为 .
10.如图,在△ABC中,BA,BC分别为⊙O的切线,点E和点C为切线点,线段AC经过圆心O且与⊙O相交于D、C两点,若tanA,AD=2,则BO的长为 .
11.在Rt△ABC中,tanA,点O为AC上一点,⊙O与斜边AB相切于点P,分别与AC、BC交于点M,N,若,则的值为 .
12.如图,在Rt△ABC中,∠CAB=90°,I为△ABC的内心,延长CI交AB于点D.
(1)∠BIC= °;
(2)若BD,BI=4,则AD= .
13.如图,六边形ABCDEF是正六边形,曲线FA1B1C1D1E1F1…叫做“正六边形的渐开线”,,,,,,,…的圆心依次按A,B,C,D,E,F循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB=1时,曲线FA1B1C1D1E1F1的长度是 .
14.如图,点A,B,C是⊙O上的点,连接AB,AC,BC,且∠ACB=15°,过点O作OD∥AB交⊙O于点D,连接AD,BD,已知⊙O半径为2,则图中阴影面积为 .
15.如图,矩形ABCD中,AB=6,BC=9,以D为圆心,3为半径作⊙D,E为⊙D上一动点,连接AE,以AE为直角边作Rt△AEF,使∠EAF=90°,tan∠AEF,则点F与点C的最小距离为 .
三.解答题
16.如图,已知二次函数yx2﹣4的图象与x轴交于A,B两点,与y轴交于点C,⊙C的半径为,P为⊙C上一动点.
(1)点B,C的坐标分别为B( ),C( );
(2)是否存在点P,使得△PBC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)连接PB,若E为PB的中点,连接OE,则OE的最大值= .
17.如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.
(1)求证:CD=CE;
(2)若AE=GE,求证:△CEO是等腰直角三角形.
18.如图,AB是⊙O的直径,半径OC⊥AB,垂足为O,直线l为⊙O的切线,A是切点,D是OA上一点,CD的延长线交直线l于点E,F是OB上一点,CF的延长线交⊙O于点G,连接AC,AG,已知⊙O的半径为3,CE,5BF﹣5AD=4.
(1)求AE的长;
(2)求cos∠CAG的值及CG的长.
19.如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD,过点E作EF⊥AB,垂足为F,∠AEF=∠D.
(1)求证:AD⊥BC;
(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.
①求证:AG与⊙O相切;
②当,CE=4时,直接写出CG的长.
20.如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有
一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.
(1)求证:BP是⊙O的切线;
(2)如果OA=5,AM=4,求PN的值;
(3)如果PD=PH,求证:AH•OP=HP•AP.
21.已知△ABC内接于⊙O,AB=AC,∠ABC的平分线与⊙O交于点D,与AC交于点E,连接CD并延长与⊙O过点A的切线交于点F,记∠BAC=α.
(1)如图1,若α=60°,
①直接写出的值为 ;
②当⊙O的半径为2时,直接写出图中阴影部分的面积为 ;
(2)如图2,若α<60°,且,DE=4,求BE的长.
22.如图所示:⊙O与△ABC的边BC相切于点C,与AC、AB分别交于点D、E,DE∥OB.DC是⊙O的直径.连接OE,过C作CG∥OE交⊙O于G,连接DG、EC,DG与EC交于点F.
(1)求证:直线AB与⊙O相切;
(2)求证:AE•ED=AC•EF;
(3)若EF=3,tan∠ACE时,过A作AN∥CE交⊙O于M、N两点(M在线段AN上),求AN的长.
23.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.
(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);
①求此抛物线的函数解析式;
②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;
(2)如图2,若a=1,c=﹣4,求证:无论b取何值,点D的坐标均不改变.
24.如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.
(1)求证:△DOE∽△ABC;
(2)求证:∠ODF=∠BDE;
(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若,求sinA的值.
25.如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P、Q两点(Q在P、H之间).我们把点P称为⊙I关于直线a的“远点“,把PQ•PH的值称为⊙I关于直线a的“特征数”.
(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4).半径为1的⊙O与两坐标轴交于点A、B、C、D.
①过点E画垂直于y轴的直线m,则⊙O关于直线m的“远点”是点 (填“A”、“B”、“C”或“D”),⊙O关于直线m的“特征数”为 ;
②若直线n的函数表达式为yx+4.求⊙O关于直线n的“特征数”;
(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,为半径作⊙F.若⊙F与直线l相离,点N(﹣1,0)是⊙F关于直线l的“远点”.且⊙F关于直线l的“特征数”是4,求直线l的函数表达式.
26.(1)如图1,点P为矩形ABCD对角线BD上一点,过点P作EF∥BC,分别交AB、CD于点E、F.若BE=2,PF=6,△AEP的面积为S1,△CFP的面积为S2,则S1+S2= ;
(2)如图2,点P为▱ABCD内一点(点P不在BD上),点E、F、G、H分别为各边的中点.设四边形AEPH的面积为S1,四边形PFCG的面积为S2(其中S2>S1),求△PBD的面积(用含S1、S2的代数式表示);
(3)如图3,点P为▱ABCD内一点(点P不在BD上),过点P作EF∥AD,HG∥AB,与各边分别相交于点E、F、G、H.设四边形AEPH的面积为S1,四边形PGCF的面积为S2(其中S2>S1),求△PBD的面积(用含S1、S2的代数式表示);
(4)如图4,点A、B、C、D把⊙O四等分.请你在圆内选一点P(点P不在AC、BD上),设PB、PC、围成的封闭图形的面积为S1,PA、PD、围成的封闭图形的面积为S2,△PBD的面积为S3,△PAC的面积为S4,根据你选的点P的位置,直接写出一个含有S1、S2、S3、S4的等式(写出一种情况即可).
专题15 易错小题考前练 填空50道-2022年决胜中考数学考前抢分冲刺(全国通用): 这是一份专题15 易错小题考前练 填空50道-2022年决胜中考数学考前抢分冲刺(全国通用),文件包含专题15易错小题考前练填空50道解析版docx、专题15易错小题考前练填空50道原卷版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
专题08 相似经典-2022年决胜中考数学考前抢分冲刺(全国通用): 这是一份专题08 相似经典-2022年决胜中考数学考前抢分冲刺(全国通用),文件包含专题08相似经典解析版docx、专题08相似经典原卷版docx、专题08相似经典模型讲解docx等3份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。
专题10 数与式的经典易错题-2022年决胜中考数学考前抢分冲刺(全国通用): 这是一份专题10 数与式的经典易错题-2022年决胜中考数学考前抢分冲刺(全国通用),文件包含专题10数与式的经典易错题解析版docx、专题10数与式的经典易错题原卷版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。