专题04 立体几何-十年高考数学(理)客观题(2012-2021)真题分项详解
展开专题04 立体几何
【2021年乙卷】安徽、河南、山西、江西、甘肃、陕西、黑龙江、吉林、宁夏、新疆、青海、内蒙古
1. 在正方体中,P为的中点,则直线与所成的角为( )
A. B. C. D.
【2021年乙卷】安徽、河南、山西、江西、甘肃、陕西、黑龙江、吉林、宁夏、新疆、青海、内蒙古
2. 以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).
【2021年甲卷】贵州、云南、四川、西藏、广西
3. 在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )
A. B. C. D.
【2021年甲卷】贵州、云南、四川、西藏、广西
4. 已如A,B,C是半径为1的球O的球面上的三个点,且,则三棱锥的体积为( )
A. B. C. D.
【2021年新课标1卷】山东、广东、河北、江苏、湖北、湖南、福建
5. 已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )
A. B. C. D.
【2021年新课标1卷】山东、广东、河北、江苏、湖北、湖南、福建
6. 正三棱柱中,,点满足,其中,,则( )
A. 当时,的周长为定值
B. 当时,三棱锥的体积为定值
C. 当时,有且仅有一个点,使得
D. 当时,有且仅有一个点,使得平面
【2020年】
7.(2020·新课标Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )
A. B.
C. D.
8.(2020·新课标Ⅰ)已知A、B、C为球O球面上的三个点,⊙为的外接圆,若⊙的面积为,,则球O的表面积为( )
A. B. C. D.
9.(2020·新课标Ⅱ)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为( )
A. E B. F C. G D. H
10.(2020·新课标Ⅲ)下图为某几何体的三视图,则该几何体的表面积是( )
A. 6+4 B. 4+4 C. 6+2 D. 4+2
11.(2020·北京卷)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).
A B. C. D.
12.(2020·山东卷)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为( )
A. 20° B. 40°
C. 50° D. 90°
13.(2020·天津卷)若棱长为的正方体的顶点都在同一球面上,则该球的表面积为( )
A. B. C. D.
14.(2020·浙江卷)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是( )
A. B. C. 3 D. 6
15.(2020·山东卷)已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以为球心,为半径的球面与侧面BCC1B1的交线长为________.
16.(2020·浙江卷)已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为_______.
17.(2020·江苏卷)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半轻为0.5 cm,则此六角螺帽毛坯的体积是____cm.
18.(2020·新课标Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.
【2019年】
19.【2019·全国Ⅰ卷】已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( )
A. B.
C. D.
20.【2019·全国Ⅱ卷】设α,β为两个平面,则α∥β的充要条件是( )
A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行
C.α,β平行于同一条直线 D.α,β垂直于同一平面
21.【2019·全国Ⅲ卷】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则( )
A.BM=EN,且直线BM,EN 是相交直线
B.BM≠EN,且直线BM,EN 是相交直线
C.BM=EN,且直线BM,EN 是异面直线
D.BM≠EN,且直线BM,EN 是异面直线
22.【2019·浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是( )
A.158 B.162
C.182 D.324
23.【2019·浙江卷】设三棱锥V–ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P–AC–B的平面角为γ,则( )
A.β<γ,α<γ B.β<α,β<γ
C.β<α,γ<α D.α<β,γ<β
24.【2019·全国Ⅲ卷】学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体挖去四棱锥O—EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,,3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为___________g.
25.【2019·北京卷】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.
26.【2019·北京卷】已知l,m是平面外的两条不同直线.给出下列三个论断:
①l⊥m; ②m∥; ③l⊥.
以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.
27.【2019·天津卷】已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.
28.【2019·江苏卷】如图,长方体的体积是120,E为的中点,则三棱锥E−BCD的体积是 ▲ .
【2018年】
29.【2018·全国Ⅰ卷】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为
A. B.
C.3 D.2
30.【2018·全国Ⅰ卷】已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为
A. B.
C. D.
31.【2018·全国Ⅲ卷】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是
32.【2018·浙江卷】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是
A.2 B.4
C.6 D.8
33.【2018·全国Ⅲ卷】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为
A. B.
C. D.
34.【2018·全国Ⅱ卷】在长方体中,,,则异面直线与所成角的余弦值为
A. B.
C. D.
35.【2018·浙江卷】已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则
A.θ1≤θ2≤θ3 B.θ3≤θ2≤θ1
C.θ1≤θ3≤θ2 D.θ2≤θ3≤θ1
36.【2018·江苏卷】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.
37.【2018·全国II卷】已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.
【2017年】
38.【2017·全国Ⅱ卷】已知直三棱柱中,,,,则异面直线与所成角的余弦值为
A. B.
C. D.
39.【2017·全国Ⅰ卷】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为
A.10 B.12
C.14 D.16
40.【2017·北京卷】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为
A.3 B.2
C.2 D.2
41.【2017·全国Ⅱ卷】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为
A. B.
C. D.
42.【2017·全国Ⅲ卷】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为
A. B.
C. D.
43.【2017·浙江卷】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是
A. B.
C. D.
44.【2017·浙江卷】如图,已知正四面体(所有棱长均相等的三棱锥),P,Q,R分别为AB,BC,CA上的点,AP=PB,,分别记二面角D–PR–Q,D–PQ–R,D–QR–P的平面角为,则
A. B.
C. D.
45.【2017·全国I卷】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 .
46.【2017·山东卷】由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为 .
47.【2017·天津卷】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为___________.
48.【2017·江苏卷】如图,在圆柱内有一个球,该球与圆柱的上、下底面及母线均相切.记圆柱的体积为,球的体积为,则的值是 .
49【2017·全国Ⅲ卷】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
①当直线AB与a成60°角时,AB与b成30°角;
②当直线AB与a成60°角时,AB与b成60°角;
③直线AB与a所成角的最小值为45°;
④直线AB与a所成角的最大值为60°.
其中正确的是________.(填写所有正确结论的编号)
【2016年】
50. 【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是( )
(A) (B) (C) (D)
[来源:Zxxk.Com][来源:Zxxk.Com]
51.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )
(A) (B) (C) (D)
52.【2016年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()
A. B. C.D.
53.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )
(A) (B) (C)90 (D)81
54.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )
(A) (B) (C) (D)
55.【2016高考浙江理数】已知互相垂直的平面交于直线l.若直线m,n满足 则( )
A.m∥l B.m∥n C.n⊥l D.m⊥n
56.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .
57.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm),则该几何体的表面积是 cm2,体积是 cm3.
58.【2016高考新课标2理数】 是两个平面,是两条直线,有下列四个命题:
(1)如果,那么.
(2)如果,那么.
(3)如果,那么.
(4)如果,那么与所成的角和与所成的角相等.
其中正确的命题有 . (填写所有正确命题的编号)
59.【2016高考浙江理数】如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是 .
60.【2016高考新课标1卷】平面过正方体ABCD-A1B1C1D1的顶点A,//平面CB1D1,平面ABCD=m,平面AB B1A1=n,则m、n所成角的正弦值为
(A) (B) (C) (D)
61.【2016高考新课标3理数】在封闭的直三棱柱内有一个体积为的球,若,,,,则的最大值是( )
(A)4π (B) (C)6π (D)
62.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为_______m3.
【2015年新课标1卷】
63、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有
A.14斛 B.22斛 C.36斛 D.66斛
【2015年新课标1卷】
64、圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。若该几何体的表面积为16 + 20,则r=
(A)1(B)2(C)4(D)8
【2015年新课标2卷】
65.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )
A.
B.
C.
D.
【2015年新课标2卷】
66.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为( )
A.
36π
B.
64π
C.
144π
D.
256π
【2015年北京卷】
67.(5分)(2015•北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )
A.
2+
B.
4+
C.
2+2
D.
5
68.(5分)(2015•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为 .
【2014年新课标1卷】
69、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为
. .6 . .4
【2014年新课标2卷】
70. 如图11,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )
图11
A. B. C. D.
【2014年新课标2卷】
71. 直三棱柱ABCA1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为( )
A. B. C. D.
【2014年全国大纲卷】
72(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )
A. B.16π C.9π D.
【2014年全国大纲卷】
73.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,
C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为( )
A. B. C. D.
【2013年全国新课标1卷】
74、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为 ( )
A、cm3 B、cm3
C、cm3 D、cm3
【2013年全国新课标1卷】
75、某几何体的三视图如图所示,则该几何体的体积为
. .
. .
(2013课标全国Ⅱ,理4)
76.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,lα,lβ,则( ).
A.α∥β且l∥α
B.α⊥β且l⊥β
C.α与β相交,且交线垂直于l
D.α与β相交,且交线平行于l
(2013课标全国Ⅱ,理7)
77一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为( ).
【2012年全国新课标1卷】
78、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )
A.6 B.9 C.12 D.18
【2012年全国新课标1卷】
79、已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为( )
A. B. C. D.
专题04 立体几何 -十年高考数学(文)客观题(2012-2021)真题分项详解: 这是一份专题04 立体几何 -十年高考数学(文)客观题(2012-2021)真题分项详解,文件包含专题04立体几何解析版-十年高考数学文客观题2012-2021真题分项详解doc、专题04立体几何原卷版-十年高考数学文客观题2012-2021真题分项详解doc等2份试卷配套教学资源,其中试卷共73页, 欢迎下载使用。
专题11 复数-十年高考数学(理)客观题(2012-2021)真题分项详解: 这是一份专题11 复数-十年高考数学(理)客观题(2012-2021)真题分项详解,文件包含专题11复数解析版-十年高考数学理客观题2012-2021真题分项详解doc、专题11复数原卷版-十年高考数学理客观题2012-2021真题分项详解doc等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
专题12 二项式-十年高考数学(理)客观题(2012-2021)真题分项详解: 这是一份专题12 二项式-十年高考数学(理)客观题(2012-2021)真题分项详解,文件包含专题12二项式解析版-十年高考数学理客观题2012-2021真题分项详解doc、专题12二项式原卷版-十年高考数学理客观题2012-2021真题分项详解doc等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。