冀教版七年级下册第八章 整式乘法综合与测试当堂达标检测题
展开冀教版七年级数学下册第八章整式的乘法章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、下列计算正确的是( )
A.(﹣m3n)2=m5n2 B.6a2b3c÷2ab3=3a
C.3x2÷(3x﹣1)=x﹣3x2 D.(p2﹣4p)p﹣1=p﹣4
2、在幼发拉底河岸的古代庙宇图书馆遗址里,曾经发掘出大量的黏土板,美索不达米亚人在这些黏土板上刻出来乘法表、加法表和平方表.用这些简单的平方表,美索不达米亚人这样计算:第一步:(103+95)÷2=99,第二步(103﹣95)÷2=4;第三步:查平方表;知99的平方是9801,第四步:查平方表,知4的平方是16,第五步: 设两因数分别为a和b,写出蕴含其中道理的整式运算( )
A.
B.
C.
D.
3、下列各式中,不正确的是( )
A.a4÷a3=a B.(a﹣3)2=a﹣6 C.a•a﹣2=a3 D.a2﹣2a2=﹣a2
4、计算的结果( )
A. B. C. D.
5、若三角形的底边为2n,高为2n﹣1,则此三角形的面积为( )
A.4n2+2n B.4n2﹣1 C.2n2﹣n D.2n2﹣2n
6、北京冬奥会标志性场馆国家速滑馆“冰丝带”近12000平方米的冰面采用分模块控制技术,可根据不同项目分区域、分标准制冰.将12000用科学记数法表示为( )
A. B. C. D.
7、在下列运算中,正确的是( )
A.a3•a2=a6 B.(ab2)3=a6b6
C.(a3)4=a7 D.a4÷a3=a
8、神舟号载人飞船于2021年10月16日凌晨成功对接中国空间站,自升空以来神舟十三号飞船每天绕地球16圈,按地球赤道周长计算神舟十三号飞船每天飞行约641200千米,641200用科学记数法表示为( )
A. B. C. D.
9、一种花粉颗粒直径约为0.0000075米,将数据0.0000075用科学计数法表示为( )
A. B. C. D.
10、的计算结果是( )
A. B. C. D.
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、计算:a2⋅a4=______.=_____.
2、已知3m=a,3n=b,则33m+2n的结果是____.
3、阅读理解:①根据幂的意义,表示个相乘;则;②,知道和可以求,我们不妨思考;如果知道,,能否求呢?对于,规定,,例如:,所以,.记,,,;与之间的关系式为__.
4、截至2021年10月30日,电影《长津湖》的累计票房达到大约5500000000元,数据5500000000用科学记数法表示为_________.
5、用科学记数法可表示为_____.
三、解答题(5小题,每小题10分,共计50分)
1、计算:
(1);
(2).
2、计算:.
3、计算:.
4、化简求值
,其中 ;
5、计算:.
-参考答案-
一、单选题
1、D
【解析】
【分析】
A:根据积的乘方法则运算;B:根据单项式除法法则运算;C:不能再计算;D:先把负指数化为正指数,再根据单项式乘以多项式法则计算.
【详解】
解:A.原式=m6n2,故不符合题意;
B.原式=3ac,故不符合题意;
C.原式=3x2÷(3x﹣1),故不符合题意;
D.原式=(P2﹣4P)×=P﹣4,故符合题意;
故选:D.
【点睛】
本题主要考查整式的混合运算、负整数指数幂,掌握做题步骤一般要按照先乘方后乘除,最后加减的顺序运算,把负指数化为正指数是解题关键.
2、D
【解析】
【分析】
先观察题干实例的运算步骤,发现对应的数即为 从而可得出结论.
【详解】
解:由题意得:
故选D
【点睛】
本题考查的是利用完全平方公式进行运算,掌握“”是解本题的关键.
3、C
【解析】
【分析】
分别根据合并同类项、同底数幂的乘法、幂的乘方、负整数指数幂、同底数幂的除法的运算法则计算出各项结果再进行判断即可.
【详解】
解:A.原式=a,∴不符合题意;
B.原式=a﹣6,∴不符合题意;
C.原式=a﹣1,∴符合题意;
D.原式=﹣a2,∴不符合题意;
故选:C.
【点睛】
本题考查合并同类项、同底数幂的乘法、幂的乘方、负整数指数幂、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.
4、A
【解析】
【分析】
利用幂的乘方计算即可求解.
【详解】
解:.
故选:.
【点睛】
本题考查了幂的乘方,掌握(am)n=amn是解决本题的关键.
5、C
【解析】
【分析】
根据三角形面积公式列式,然后利用单项式乘多项式的运算法则进行计算.
【详解】
解:三角形面积为×2n(2n−1)=2n2-n,
故选:C.
【点睛】
本题考查单项式乘多项式的运算,理解三角形面积=×底×高,掌握单项式乘多项式的运算法则是解题关键.
6、C
【解析】
【分析】
科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
【详解】
解:12000
故选C
【点睛】
本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
7、D
【解析】
【分析】
由;;,判断各选项的正误即可.
【详解】
解:A中,错误,故本选项不合题意;
B中,错误,故本选项不合题意;
C中,错误,故本选项不合题意;
D中,正确,故本选项符合题意.
故选:D.
【点睛】
本题考查了同底数幂的乘除,积的乘方,幂的乘方等知识.解题的关键在于正确求解.
8、B
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:641200用科学记数法表示为:641200=,
故选择B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
9、A
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.0000075=7.5×10-6,
故选:A.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
10、D
【解析】
【分析】
原式化为,根据平方差公式进行求解即可.
【详解】
解:
故选D.
【点睛】
本题考查了平方差公式的应用.解题的关键与难点在于应用平方差公式.
二、填空题
1、 a6
【解析】
【分析】
根据同底数幂的乘法法则和积的乘方法则计算.
【详解】
解:a2·a4=a6.
=.
故答案为:a6;
【点睛】
本题考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
2、a3b2##b2a3
【解析】
【分析】
根据幂的乘方以及同底数幂的乘法解决此题.
【详解】
解:∵3m=a,3n=b,
∴33m+2n=33m•32n=(3m)3•(3n)2=a3b2.
故答案为:a3b2.
【点睛】
本题主要考查幂的乘方以及同底数幂的乘法的逆运算,熟练掌握幂的乘方以及同底数幂的乘法是解决本题的关键.
3、
【解析】
【分析】
由题意得:x=54m,y−3=54m+2,然后根据同底数幂的逆用得问题的答案.
【详解】
解:由题意得:,,
,即.
故答案为:.
【点睛】
本题考查了有理数的乘方、同底数幂乘法的逆用,正确理解新规定是解题的关键.
4、
【解析】
【分析】
用科学记数法表示较大的数时,一般形式为,其中,为整数.
【详解】
解:.
故答案为:
【点睛】
本题考查了科学记数法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数,确定与的值是解题的关键.
5、
【解析】
【分析】
对于一个绝对值较大的数,用科学记数法写成a×10n的形式,其中1≤|a|<10,n是比原整数位数少1的数.
【详解】
解:,
故答案为:.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.
三、解答题
1、 (1);
(2)
【解析】
【分析】
(1)根据整式的乘法运算法则化简,再合并同类项即可求解;
(2)根据负指数幂与零指数幂的性质化简,即可求解.
(1)
解:;
(2)
解:.
【点睛】
本题考查了单项式乘多项式,多项式乘多项式,乘方,负整数指数幂,零指数幂,关键是熟练掌握计算法则正确进行计算.
2、x-2y
【解析】
【分析】
根据完全平方公式、平方差公式及整式的各运算法则进行计算即可.
【详解】
解:原式
.
【点睛】
本题考查了整式的混合运算,熟练掌握各运算法则及公式是解题的关键.
3、
【解析】
【分析】
先算幂的乘方,再算同底数幂的乘法,最后算同底数幂的除法即可.
【详解】
解:
.
【点睛】
本题主要考查同底数幂的乘法,幂的乘方,同底数幂的除法,解答的关键是掌握幂的运算法则.
4、,6.
【解析】
【分析】
先利用完全平方公式和平方差公式去括号,然后合并同类项,最后代值计算即可.
【详解】
解:
当时,原式.
【点睛】
本题主要考查了整式的化简求值,解题的关键在于能够熟练掌握乘法公式.
5、x2
【解析】
【分析】
先计算积的乘方,再计算单项式的除法,然后合并同类项即可.
【详解】
解:,
=,
=,
=.
【点睛】
本题考查整式的乘除混合计算,掌握混合运算法则,积的乘方,单项式除单项式的法则,同类项的定义与合并同类项法则是解题关键.
初中数学冀教版七年级下册第八章 整式乘法综合与测试随堂练习题: 这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试随堂练习题,共16页。试卷主要包含了计算 等于,下列运算正确的是,计算正确的结果是,已知,,则的值为,下列各式中,不正确的是,在下列运算中,正确的是等内容,欢迎下载使用。
数学七年级下册第八章 整式乘法综合与测试课后测评: 这是一份数学七年级下册第八章 整式乘法综合与测试课后测评,共16页。试卷主要包含了下列运算正确的是,下列各式中,不正确的是等内容,欢迎下载使用。
初中数学冀教版七年级下册第八章 整式乘法综合与测试课时练习: 这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试课时练习,共13页。试卷主要包含了下列运算正确的是,计算的结果等内容,欢迎下载使用。

