冀教版七年级下册第九章 三角形综合与测试课后作业题
展开冀教版七年级数学下册第九章 三角形课时练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各组数中,不能作为一个三角形三边长的是( )
A.4,4,4 B.2,7,9 C.3,4,5 D.5,7,9
2、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )
A.105° B.120° C.135° D.150°
3、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是( )
A.50° B.60° C.40° D.30°
4、一把直尺与一块三角板如图放置,若,则( )
A.120° B.130° C.140° D.150°
5、已知的三边长分别为a,b,c,则a,b,c的值可能分别是( )
A.1,2,3 B.3,4,7
C.2,3,4 D.4,5,10
6、下列各组线段中,能构成三角形的是( )
A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、6
7、如图,在ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为( )
A.110 B.100 C.55 D.45
8、下列各图中,有△ABC的高的是( )
A. B.
C. D.
9、如图,于点,于点,于点,下列关于高的说法错误的是( )
A.在中,是边上的高 B.在中,是边上的高
C.在中,是边上的高 D.在中,是边上的高
10、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在ABC中,已知∠A=60°,∠B=80°,则∠C是_____°.
2、不等边△ABC的两条高的长度分别为4和12,若第三条高也为整数,那么它的长度最大值是_________
3、如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是80,则△ABE的面积是________.
4、在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且a=3,b=4,若三边长为连续整数,则c=______.
5、已知在△ABC中,∠A+∠B<∠C,则△ABC是______三角形.(填“直角”、“锐角”或“钝角”)
三、解答题(5小题,每小题10分,共计50分)
1、如图,BD⊥AC,∠1=∠2,∠C=66°,求∠ABC的度数.
2、如图,FA⊥EC,垂足为E,∠F=40°,∠C=20°,求∠FBC的度数.
3、已知,如图1,直线,E为直线上方一点,连接,与交于P点.
(1)若,则_________
(2)如图1所示,作的平分线交于点F,点M为上一点,的平分线交于点H,过点H作交的延长线于点G,,且,求的度数.
(3)如图2,在(2)的条件下,,将绕点F顺时针旋转,速度为每秒钟,记旋转中的为,同时绕着点D顺时针旋转,速度为每秒钟,记旋转中的为,当旋转一周时,整个运动停止.设运动时间为t(秒),则当其中一条边与的边DF′互相垂直时,直接写出t的值.
4、(1)如图,AB//CD,CF平分∠DCE,若∠DCF=30°,∠E=20°,求∠ABE的度数;
(2)如图,AB//CD,∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E的补角的和为190°,求∠ABE的度数.
(3)如图,P为(2)中射线BE上一点,G是CD上任一点,PQ平分∠BPG,GN//PQ,GM平分∠DGP,若∠B=30°,求∠MGN的度数.
5、如图所示,AD,CE是△ABC的两条高,AB=6cm,BC=12cm,CE=9cm.
(1)求△ABC的面积;
(2)求AD的长.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据三角形两边之和大于第三边,两边之差小于第三边即可求解.
【详解】
解:选项A:4,4,4可以构成等边三角形,故选项A正确;
选项B:2+7=9,两边之和等于第三边,不能构成三角形,故选项B错误;
选项C:3+4>5,这三边可以构成三角形,故选项C正确;
选项D:任意两边之和大于第三边,两边之差小于第三边,可以构成三角形,故选项D正确;
故选:B.
【点睛】
本题考查了构成三角形的三边的条件:两边之和大于第三边,两边之差小于第三边,由此即可求解.
2、B
【解析】
【分析】
由题意易得,然后根据三角形外角的性质可求解.
【详解】
解:由旋转的性质可得:,
∴;
故选B.
【点睛】
本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.
3、A
【解析】
【分析】
根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.
【详解】
解: 将△OAB绕点O逆时针旋转80°得到△OCD,
∠A的度数为110°,∠D的度数为40°,
故选A
【点睛】
本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.
4、B
【解析】
【分析】
由BC∥ED,得到∠2=∠CBD,由三角形外角的性质得到∠CBD=∠1+∠A=130°,由此即可得到答案.
【详解】
解:如图所示,由题意得:∠A=90°,BC∥EF,
∴∠2=∠CBD,
又∵∠CBD=∠1+∠A=130°,
∴∠2=130°,
故选B.
【点睛】
本题主要考查了三角形外角的性质,平行线的性质,熟知相关知识是解题的关键.
5、C
【解析】
【分析】
三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.
【详解】
解:A、1+2=3,不能组成三角形,不符合题意;
B、3+4=7,不能组成三角形,不符合题意;
C、2+3>4,能组成三角形,符合题意;
D、4+5<10,不能组成三角形,不符合题意;
故选:C.
【点睛】
本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.
6、C
【解析】
【分析】
根据三角形的三边关系定理逐项判断即可得.
【详解】
解:三角形的三边关系定理:任意两边之和大于第三边.
A、,不能构成三角形,此项不符题意;
B、,不能构成三角形,此项不符题意;
C、,能构成三角形,此项符合题意;
D、,不能构成三角形,此项不符题意;
故选:C.
【点睛】
本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.
7、B
【解析】
【分析】
根据三角形的外角的性质计算即可.
【详解】
解:由三角形的外角的性质可知,∠ACD=∠A+∠B=100°,
故选:B.
【点睛】
本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键.三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角.
8、B
【解析】
【分析】
利用三角形的高的定义可得答案.
【详解】
解:∵选项B是过顶点C作的AB边上的高,
∴有△ABC的高的是选项B,
故选:B.
【点睛】
此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.
9、C
【解析】
【详解】
解:A、在中,是边上的高,该说法正确,故本选项不符合题意;
B、在中,是边上的高,该说法正确,故本选项不符合题意;
C、在中,不是边上的高,该说法错误,故本选项符合题意;
D、在中,是边上的高,该说法正确,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.
10、C
【解析】
【分析】
根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.
【详解】
解:c的范围是:5﹣3<c<5+3,即2<c<8.
∵c是奇数,
∴c=3或5或7,有3个值.
则对应的三角形有3个.
故选:C.
【点睛】
本题主要考查了三角形三边关系,准确分析判断是解题的关键.
二、填空题
1、40
【解析】
【分析】
根据三角形内角和定理计算即可.
【详解】
解:∵∠A=60°,∠B=80°,
∴∠C=180°﹣60°﹣80°=40°,
故答案为:40.
【点睛】
本题考查三角形内角和定理,三角形内角和是180°.
2、5
【解析】
【分析】
根据三角形三边关系及三角形面积相等即可求出要求高的整数值.
【详解】
解:因为不等边△ABC的两条高的长度分别为4和12,根据面积相等可设 △ABC的两边长为3x,x;
因为 3x×4=12×x(2倍的面积),面积S=6x,
因为知道两条边的假设长度,根据两边之和大于第三边,两边之差小于第三边可得:2x<第三边长度<4x,
因为要求高的最大长度,所以当第三边最短时,在第三边上的高就越长,
S=×第三边的长×高,6x>×2x×高,6x<×4x×高,
∴6>高>3,
∵是不等边三角形,且高为整数,
∴高的最大值为5,
故答案为:5.
【点睛】
本题考查了三角形三边关系及三角形的面积,难度较大,关键是掌握三角形任意两边之和大于第三边,三角形的任意两边差小于第三边.
3、20
【解析】
【分析】
根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可解答.
【详解】
解:∵AD是BC上的中线,
∴S△ABD=S△ACD=S△ABC,
∵BE是△ABD中AD边上的中线,
∴S△ABE=S△BED=S△ABD,
∴S△ABE=S△ABC,
∵△ABC的面积是80,
∴S△ABE=×80=20.
故答案为:20.
【点睛】
本题主要考查了三角形面积的求法,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.
4、2或5##5或2
【解析】
【分析】
根据三角形的三边关系求得第三边的取值范围,进一步确定第三边的长,由此得出答案即可.
【详解】
解:∵a=3,b=4,
∴根据三角形的三边关系,得4﹣3<c<4+3.
即1<c<7,
∵若三边长为连续整数,
∴c=2或5
故答案为:2或5.
【点睛】
本题主要考查三角形三边关系,注意掌握三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,解题的关键掌握三角形三边关系.
5、钝角
【解析】
【分析】
根据三角形内角和定理,当可求得可得到答案.
【详解】
解:
,
当时,可得,则为钝角三角形,
故答案为:钝角.
【点睛】
本题主要考查三角形内角和定理,解题的关键是掌握三角形的三个内角和为.
三、解答题
1、69°
【解析】
【分析】
利用三角形的内角和定理先求出∠2、∠CBD的度数,再利用角的和差关系求出∠ABC的度数.
【详解】
解:∵BD⊥AC,
∴∠ADB=∠BDC=90°.
∵∠1=∠2,∠C=66°,
∴∠1=∠2=∠ADB=45°,
∠CBD=∠ADB﹣∠C=24°.
∴∠ABC=∠2+∠CBD
=45°+24°
=69°.
【点睛】
本题考查了三角形的内角和定理,掌握三角形的内角和等于180°是解决本题的关键.
2、110°
【解析】
【分析】
根据三角形的内角和可得∠A的度数,再利用外角的性质可得∠FBC的度数.
【详解】
解:在△AEC 中,FA⊥EC,∴∠AEC=90°,
∴∠A=90°-∠C=70°.
∵∠FBC是△ABF的一个外角,
∴∠FBC=∠A+∠F=70°+40°=110°.
【点睛】
本题考查三角形的内角和与外角的性质,求出∠A的度数是解题关键.
3、 (1)40;
(2)=70°;
(3)t的值为10.
【解析】
【分析】
(1)根据平行线性质求出∠EPB=∠CDE=70°,根据∠ABE是△BEP的外角可求∠E=∠ABE-∠EPB=110°-70°=40°即可;
(2)根据,得出∠GFB=∠FBE,∠HDF=∠PFD,根据FH平分,得出∠GFH=∠HFP,可得∠GFB=2∠HFB=2∠HFD+2∠DFP,根据DF平分,得出∠FDH=∠FDE=∠PFD,可得∠EPB=∠PDH=2∠PDF=2∠PFD,根据∠EBF为△EBP的外角,可证∠E=2∠DFH,根据,解方程得出∠DFH=20°,根据,得出∠G+∠GFH=90°,得出∠G+∠PFD=90°-∠HFD=90°-20°=70°即可;
(3)当时,∠HFP=∠HFD+∠DFP=45°,可得∠GFH=∠HFP=45°,∠G=45°,当其中一条边与的边DF′互相垂直,分三种情况当G′H′⊥DF′时,FH′交CD与S,FH′∥F′D,∠CDF′=25°+5t,∠FSC=45°+3°t,列方程25°+5t =45°+3°t,当GF⊥F′D时,GF交CD于R,交DF′于Q,∠HDF′=25°+5t,∠CRG=∠GFA=3t-90°,∠QRD+∠QDR=90°,列方程3t-90°+180°-(25+5t)=90°,当H′F⊥DF′,H′F交CD于U,交DF′于V,∠HDF′=25°+5°t,∠CUF=∠AFH′=3°t-90°-45°,∠VUD+∠UDV=90°,列方程180°-(25°+5°t)+3°t-90°-45°=90°即可.
(1)
解:∵,,
∴∠EPB=∠CDE=70°,
∵∠ABE是△BEP的外角,,
∴∠E=∠ABE-∠EPB=110°-70°=40°,
故答案为:40;
(2)
解:∵,
∴∠GFB=∠FBE,∠HDF=∠PFD
∵FH平分,
∴∠GFH=∠HFP,
∴∠GFB=2∠HFB=2∠HFD+2∠DFP
∵DF平分,
∴∠FDH=∠FDE=∠PFD,
∴∠EPB=∠PDH=2∠PDF=2∠PFD
∵∠EBF为△EBP的外角,
∴∠EBF=∠E+∠EPB=∠E+2∠PFD,
∴2∠HFD+2∠DFP=∠E+2∠PFD,
∴∠E=2∠DFH,
∵,
∴4∠DFH=3∠DFH+20°,
∴∠DFH=20°,
∵,
∴∠FHG=90°,
∴∠G+∠GFH=90°,
∴∠G+∠PFH=∠G+∠HFD+∠PFD=90°,
∴∠G+∠PFD=90°-∠HFD=90°-20°-70°,
∴=70°;
(3)
当时,∠HFP=∠HFD+∠DFP=45°,
∴∠GFH=∠HFP=45°,
∴∠G=45°,
当其中一条边与的边DF′互相垂直,分三种情况,
当G′H′⊥DF′时,FH′交CD与S,FH′∥F′D,∠FSC=∠CDF′,∠CDF′=25°+5t,∠FSC=45°+3°t,
∴25°+5t =45°+3°t,
解得t=10,
当GF⊥F′D时,GF交CD于R,交DF′于Q,∠HDF′=25°+5t,∠CRG=∠GFA=3t-90°,
∠QRD+∠QDR=90°即3t-90°+180°-(25+5t)=90°,
解得t=-12.5<0舍去,
当H′F⊥DF′,H′F交CD于U,交DF′于V,∠HDF′=25°+5°t,∠CUF=∠AFH′=3°t-90°-45°,
∵∠VUD+∠UDV=90°,
∴180°-(25°+5°t)+3°t-90°-45°=90°,
解得t=-35<0舍去,
综合t的值为10.
【点睛】
本题考查平行线性质,三角形外角性质,角平分线有关的计算,解一元一次方程,余角性质,直线垂直,图形旋转性质,掌握平行线性质,三角形外角性质,角平分线有关的计算,解一元一次方程,余角性质, 直线垂直,图形旋转性质,根据余角性质列方程是解题关键.
4、(1)∠ABE=40°;(2)∠ABE=30°;(3)∠MGN=15°.
【解析】
【分析】
(1)过E作EMAB,根据平行线的判定与性质和角平分线的定义解答即可;
(2)过E作EMAB,过F作FNAB,根据平行线的判定与性质,角平分线的定义以及解一元一次方程解答即可;
(3)过P作PLAB,根据平行线的判定与性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义解答即可.
【详解】
解:(1)过E作EMAB,
∵ABCD,
∴CDEMAB,
∴∠ABE=∠BEM,∠DCE=∠CEM,
∵CF平分∠DCE,
∴∠DCE=2∠DCF,
∵∠DCF=30°,
∴∠DCE=60°,
∴∠CEM=60°,
又∵∠CEB=20°,
∴∠BEM=∠CEM﹣∠CEB=40°,
∴∠ABE=40°;
(2)过E作EMAB,过F作FNAB,
∵∠EBF=2∠ABF,
∴设∠ABF=x,∠EBF=2x,则∠ABE=3x,
∵CF平分∠DCE,
∴设∠DCF=∠ECF=y,则∠DCE=2y,
∵ABCD,
∴EMABCD,
∴∠DCE=∠CEM=2y,∠BEM=∠ABE=3x,
∴∠CEB=∠CEM﹣∠BEM=2y﹣3x,
同理∠CFB=y﹣x,
∵2∠CFB+(180°﹣∠CEB)=190°,
∴2(y﹣x)+180°﹣(2y﹣3x)=190°,
∴x=10°,
∴∠ABE=3x=30°;
(3)过P作PLAB,
∵GM平分∠DGP,
∴设∠DGM=∠PGM=y,则∠DGP=2y,
∵PQ平分∠BPG,
∴设∠BPQ=∠GPQ=x,则∠BPG=2x,
∵PQGN,
∴∠PGN=∠GPQ=x,
∵ABCD,
∴PLABCD,
∴∠GPL=∠DGP=2y,
∠BPL=∠ABP=30°,
∵∠BPL=∠GPL﹣∠BPG,
∴30°=2y﹣2x,
∴y﹣x=15°,
∵∠MGN=∠PGM﹣∠PGN=y﹣x,
∴∠MGN=15°.
【点睛】
此题考查平行线的判定与性质,角平分线的定义,三角形的内角和定理,解题关键在于作辅助线和掌握判定定理.
5、(1)27;(2)4.5
【解析】
【分析】
(1)根据三角形面积公式进行求解即可;
(2)利用面积法进行求解即可.
【详解】
解:(1)由题意得:.
(2)∵,
∴.
解得.
【点睛】
本题主要考查了与三角形高有关的面积求解,解题的关键在于能够熟练掌握三角形面积公式.
初中冀教版第九章 三角形综合与测试练习题: 这是一份初中冀教版第九章 三角形综合与测试练习题,共23页。试卷主要包含了如图,直线l1等内容,欢迎下载使用。
初中数学第九章 三角形综合与测试课堂检测: 这是一份初中数学第九章 三角形综合与测试课堂检测,共21页。试卷主要包含了如图,,,,则的度数是,如图,图形中的的值是,如图,为估计池塘岸边A等内容,欢迎下载使用。
初中数学冀教版七年级下册第九章 三角形综合与测试综合训练题: 这是一份初中数学冀教版七年级下册第九章 三角形综合与测试综合训练题