还剩19页未读,
继续阅读
初中数学冀教版七年级下册第九章 三角形综合与测试综合训练题
展开这是一份初中数学冀教版七年级下册第九章 三角形综合与测试综合训练题
冀教版七年级数学下册第九章 三角形专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )A.两点确定一条直线B.两点之间,线段最短C.三角形具有稳定性D.三角形的任意两边之和大于第三边2、如图,在中,AD、AE分别是边BC上的中线与高,,CD的长为5,则的面积为( )A.8 B.10 C.20 D.403、将一副三角板按不同位置摆放,下图中与互余的是( )A. B.C. D.4、下列长度的三条线段能组成三角形的是( )A.3,6,9 B.5,6,8 C.1,2,4 D.5,6,155、如图,把△ABC绕顶点C按顺时针方向旋转得到△A′B′C′,当A′B′⊥AC,∠A=50°,∠A′CB=115°时,∠B′CA的度数为( )A.30° B.35° C.40° D.45°6、如图,,,则的度数是( )A.55° B.35° C.45° D.25°7、以下列各组线段为边,能组成三角形的是( )A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm8、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是( )A.3cm B.4cm C.7cm D.10cm9、下列长度的三条线段能组成三角形的是( )A.3 4 8 B.4 4 10 C.5 6 10 D.5 6 1110、以下各组线段长为边,能组成三角形的是( )A.,, B.,, C.,, D.,,第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将△ABC平移到△A’B’C’的位置(点B’在AC边上),若∠B=55°,∠C=100°,则∠AB’A’的度数为_____°.2、如图,已知△ABC,通过测量、计算得△ABC的面积约为________cm2(结果保留一位小数). 3、如图,∠ABD=80°,∠C=38°,则∠D=___度.4、如图,在△ABC中,D是AC延长线上一点,∠A=50°,∠B=70°,则∠BCD=__________°.5、如图,,,BE平分交AD于点E,连接CE,AF交CD的延长线于点F,,若,,则的度数为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,∠C=30°,∠B=58°,AD平分∠CAB.求∠CAD和∠1的度数.2、如图,∠B=45°,∠A+15°=∠1,∠ACD=60°.求证:AB∥CD.3、如图,AD是△ABC的高,AE平分∠BAC.(1)若∠B=62°,∠C=46°,求∠DAE的度数;(2)若,求∠DAE的度数.4、在△ABC中,∠B=∠A+30°,∠C=40°,求∠A和∠B的度数.5、(1)如图,AB//CD,CF平分∠DCE,若∠DCF=30°,∠E=20°,求∠ABE的度数;(2)如图,AB//CD,∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E的补角的和为190°,求∠ABE的度数.(3)如图,P为(2)中射线BE上一点,G是CD上任一点,PQ平分∠BPG,GN//PQ,GM平分∠DGP,若∠B=30°,求∠MGN的度数.-参考答案-一、单选题1、C【解析】【分析】根据三角形具有稳定性进行求解即可.【详解】解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,故选C.【点睛】本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.2、C【解析】【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.【详解】解:∵AD是边BC上的中线,CD的长为5,∴CB=2CD=10,的面积为,故选:C.【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.3、A【解析】【分析】根据平角的定义可判断A,D,根据同角的余角相等可判断B,根据三角形的外角的性质可判断C,从而可得答案.【详解】解:选项A:根据平角的定义得:∠α+90°+∠β=180°, ∴∠α+∠β=90°, 即∠α与∠β互余;故A符合题意;选项B:如图, 故B不符合题意;选项C:如图, 故C不符合题意;选项D: 故D不符合题意;故选A【点睛】本题考查的是平角的定义,互余的含义,同角的余角相等,三角形的外角的性质,掌握“与直角三角形有关的角度的计算”是解本题的关键.4、B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行解答即可得.【详解】解:根据三角形的三边关系,得A、3+6=9,不能组成三角形,选项说法错误,不符合题意;B、6+5=11>8,能组成三角形,选项说法正确,符合题意;C、1+2=3<4,不能够组成三角形,选项说法错误,不符合题意;D、5+6=11<15,不能够组成三角形,选项说法错误,不符合题意;故选B.【点睛】本题考查了构成三角形的条件,解题的关键是掌握三角形的三边关系.5、B【解析】【分析】由旋转的性质可得∠A′=∠A=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠A′CA=40°,即可求解.【详解】解:根据旋转的性质可知∠A′=∠A=50°,∠BCB'=∠ACA',∴∠A′CA=90°﹣50°=40°,∴∠BCB′=∠A′CA=40°,∴∠B′CA=∠A′CB﹣∠A′CA﹣∠BCB′=115°﹣40°﹣40°=35°.故选:B.【点睛】本题主要考查了旋转的性质,三角形内角和定理的应用,解决这类问题要找准旋转角、以及旋转后对应的线段和角.6、D【解析】【分析】根据三角形的内角和定理和对顶角相等求解即可.【详解】解:设AD与BC相交于O,则∠COD=∠AOB,∵∠C+∠COD+∠D=180°,∠A+∠AOB=∠B=180°,∠C=∠A=90°,∴∠D=∠B=25°,故选:D.【点睛】本题考查三角形的内角和定理、对顶角相等,熟练掌握三角形的内角和是180°是解答的关键.7、A【解析】【分析】三角形的任意两条之和大于第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.【详解】解: 所以以3cm,4cm,5cm为边能构成三角形,故A符合题意; 所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意; 所以以5cm,10cm,4cm为边不能构成三角形,故C不符合题意; 所以以1cm,2cm,3cm为边不能构成三角形,故D不符合题意;故选A【点睛】本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.8、C【解析】【分析】设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【详解】解:设三角形的第三边是xcm.则7-3<x<7+3.即4<x<10,四个选项中,只有选项C符合题意,故选:C.【点睛】本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.9、C【解析】【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+4<8,∴不能组成三角形,故本选项不符合题意;B.∵4+4<10,∴不能组成三角形,故本选项不符合题意;C.∵5+6>10,∴能组成三角形,故本选项符合题意;D.∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.10、B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形,故不符合题意;B、4+6>8,能组成三角形,故符合题意;C、5+6<12,不能够组成三角形,故不符合题意;D、3+3=6,不能组成三角形,故不符合题意.故选:B.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.二、填空题1、25【解析】【分析】先根据三角形内角和定理求出∠A=25°,然后根据平移的性质得到,则.【详解】解:∵∠B=55°,∠C=100°,∴∠A=180°-∠B-∠C=25°,由平移的性质可得,∴,故答案为:25.【点睛】本题主要考查了三角形内角和定理,平移的性质,平行线的性质,解题的关键在于能够熟练掌握平移的性质.2、3.9【解析】【分析】过点A作AD⊥BC的延长线于点D,测量出BC,AD的长,再利用三角形的面积公式即可求出△ABC的面积.【详解】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,BC=2.2cm,AD=3.5cm,∴S△ABC=AB•CD=×2.2×3.5=3.85≈3.9(cm2).故答案为:3.9.【点睛】本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.3、4、120【解析】【分析】根据三角形的外角性质,可得 ,即可求解.【详解】解:∵ 是 的外角,∴ ,∵∠A=50°,∠B=70°,∴ .故答案为:120【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.5、80°##80度【解析】【分析】先根据,,得出,可证AD∥BC,再证∠BAD=∠BCD,得出∠AEB=∠F,然后证∠ABC=2∠CBE=2∠F,得出∠ADC=2∠F,利用三角形内角和得出∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F,根据平角得出∠AEB+∠CED=180°-∠BEC=180°-80°=100°,列方程∠F+180°-5∠F=100°求出∠F=20°即可.【详解】解:∵,∴∠ABC+∠BCD=180°,∵∴,∴AD∥BC,∵,∴∠BAD+∠ADC=180°,∠BAF+∠F=180°,∵∠ADC+∠BCD=180°,∴∠BAD=∠BCD,∵,∴,∵∠BAF=∠BAD+∠DAF,∴∠BAF+∠AEB=180°,∴∠AEB=∠F,∵AD∥BC,∴∠CBE=∠AEB,∵BE平分,∴∠ABC=2∠CBE=2∠F,∴∠ADC=2∠F,∵,在△CED中,∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F,∵,∴∠AEB+∠CED=180°-∠BEC=180°-80°=100°,∴∠F+180°-5∠F=100°,解得∠F=20°,∴,故答案为80°.【点睛】本题考查平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,掌握平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,关键是证出∠ADC=2∠F.三、解答题1、∠CAD =46°,∠1=76°.【解析】【分析】利用三角形内角和求出∠BAC,根据角平分线定义求出∠CAD,然后根据三角形外角性质∠1=∠C+∠CAD即可求解.【详解】解:∵∠C=30°,∠B=58°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣30°﹣58°=92°.又∵AD平分∠BAC,∴∠CAD=∠BAC=46°,∵∠1是△ACD的外角,∴∠1=∠C+∠CAD=30°+46°=76°.【点睛】本题考查了三角形内角和定理、角平分线的定义、三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、见解析【解析】【分析】由三角形内角和定理和已知条件求出∠A=60°,得出∠ACD=∠A,即可得出AB∥CD.【详解】证明:∵∠A+∠B+∠1=180°,∠A+15°=∠1,∴∠A+45°+∠A+15°=180°,解得:∠A=60°,∵∠ACD=60°,∴∠ACD=∠A,∴AB∥CD.【点睛】本题考查了平行线的判定方法、三角形内角和定理;熟练掌握平行线的判定方法,由三角形内角和定理求出∠A是解决问题的关键.3、(1)8°;(2)15°【解析】【分析】(1)根据 三角形内角和定理求出∠BAC的度数,利用角平分线的性质求出∠CAE的度数,根据垂直的定义求出答案;(2)根据角平分线的性质推出∠CAE=∠BAE,利用垂直得到∠BAD+∠DAE=∠CAD-∠DAE,推出2∠DAE=,计算得到答案.【详解】解:(1)∵∠B=62°,∠C=46°,∴∠BAC=180°-∠B-∠C=72°,∵AE平分∠BAC,∴∠CAE=,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°-∠C=44°,∴∠DAE=∠DAC-∠CAE=8°;(2)∵AE平分∠BAC,∴∠CAE=∠BAE,∵AD⊥BC,∴∠ADC=90°,∴∠BAD=90°-∠B,∠CAD=90°-∠C,∴∠BAD+∠DAE=∠CAD-∠DAE,∴90°-∠B+∠DAE =90°-∠C-∠DAE,∴2∠DAE=,∴∠DAE=15°.【点睛】此题考查了三角形角平分线的性质,三角形内角和定理,垂直的定义,熟练掌握三角形的知识是解题的关键.4、,【解析】【分析】利用已知结合三角形内角和定理即可求解.【详解】解:∵,∴.∵,∴,∴,∴.【点睛】本题考查三角形内角和定理,正确得出是解题关键.5、(1)∠ABE=40°;(2)∠ABE=30°;(3)∠MGN=15°.【解析】【分析】(1)过E作EMAB,根据平行线的判定与性质和角平分线的定义解答即可;(2)过E作EMAB,过F作FNAB,根据平行线的判定与性质,角平分线的定义以及解一元一次方程解答即可;(3)过P作PLAB,根据平行线的判定与性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义解答即可.【详解】解:(1)过E作EMAB,∵ABCD,∴CDEMAB,∴∠ABE=∠BEM,∠DCE=∠CEM,∵CF平分∠DCE,∴∠DCE=2∠DCF,∵∠DCF=30°,∴∠DCE=60°,∴∠CEM=60°,又∵∠CEB=20°,∴∠BEM=∠CEM﹣∠CEB=40°,∴∠ABE=40°;(2)过E作EMAB,过F作FNAB,∵∠EBF=2∠ABF,∴设∠ABF=x,∠EBF=2x,则∠ABE=3x,∵CF平分∠DCE,∴设∠DCF=∠ECF=y,则∠DCE=2y,∵ABCD,∴EMABCD,∴∠DCE=∠CEM=2y,∠BEM=∠ABE=3x,∴∠CEB=∠CEM﹣∠BEM=2y﹣3x,同理∠CFB=y﹣x,∵2∠CFB+(180°﹣∠CEB)=190°,∴2(y﹣x)+180°﹣(2y﹣3x)=190°, ∴x=10°,∴∠ABE=3x=30°;(3)过P作PLAB,∵GM平分∠DGP,∴设∠DGM=∠PGM=y,则∠DGP=2y,∵PQ平分∠BPG,∴设∠BPQ=∠GPQ=x,则∠BPG=2x,∵PQGN,∴∠PGN=∠GPQ=x,∵ABCD,∴PLABCD, ∴∠GPL=∠DGP=2y,∠BPL=∠ABP=30°,∵∠BPL=∠GPL﹣∠BPG,∴30°=2y﹣2x,∴y﹣x=15°,∵∠MGN=∠PGM﹣∠PGN=y﹣x,∴∠MGN=15°.【点睛】此题考查平行线的判定与性质,角平分线的定义,三角形的内角和定理,解题关键在于作辅助线和掌握判定定理.
相关试卷
冀教版七年级下册第九章 三角形综合与测试同步达标检测题:
这是一份冀教版七年级下册第九章 三角形综合与测试同步达标检测题,共20页。试卷主要包含了定理,如图,在中,,,则外角的度数是,如图,已知△ABC中,BD等内容,欢迎下载使用。
2020-2021学年第九章 三角形综合与测试同步训练题:
这是一份2020-2021学年第九章 三角形综合与测试同步训练题,共21页。试卷主要包含了如图,图形中的的值是等内容,欢迎下载使用。
初中冀教版第九章 三角形综合与测试练习题:
这是一份初中冀教版第九章 三角形综合与测试练习题,共23页。试卷主要包含了如图,直线l1等内容,欢迎下载使用。