七年级下册第九章 三角形综合与测试课后练习题
展开
这是一份七年级下册第九章 三角形综合与测试课后练习题,共25页。试卷主要包含了下列各图中,有△ABC的高的是等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,D是延长线上一点,,,则的度数为( )A. B. C. D.2、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )A.两点确定一条直线B.两点之间,线段最短C.三角形具有稳定性D.三角形的任意两边之和大于第三边3、如图,将△ABC沿着DE减去一个角后得到四边形BCED,若∠BDE和∠DEC的平分线交于点F,∠DFE=α,则∠A的度数是( )A.180°﹣α B.180°﹣2α C.360°﹣α D.360°﹣2α4、若一个三角形的两边长分别为3和8,则第三边长可能是 ( )A.4 B.5 C.8 D.115、数学课上,同学们在作中AC边上的高时,共画出下列四种图形,其中正确的是( ).A. B.C. D.6、如果一个三角形的两边长都是6cm,则第三边的长不能是( )A.3cm B.6cm C.9cm D.13cm7、下列各图中,有△ABC的高的是( )A. B.C. D.8、利用直角三角板,作的高,下列作法正确的是( )A. B.C. D.9、将一张正方形纸片ABCD按如图所示的方式折叠,CE、CF为折痕,点B、D折叠后的对应点分别为B'、D',若∠ECF=21°,则∠B'CD'的度数为( )A.35° B.42° C.45° D.48°10、如图,在△ABC中,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,∠D=15°,则∠A的度数为( )A.30° B.45° C.20° D.22.5°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知BE、CD分别是 △ABC的内角平分线,BE和CD相交于点O,且∠A=40°,则∠DOE=____________2、如图,在△ABC中,D是AC延长线上一点,∠A=50°,∠B=70°,则∠BCD=__________°.3、如图,,,BE平分交AD于点E,连接CE,AF交CD的延长线于点F,,若,,则的度数为______.4、已知在△ABC中,∠A+∠B<∠C,则△ABC是______三角形.(填“直角”、“锐角”或“钝角”)5、如图,在中,已知点,,分别为,,的中点,且,则阴影部分的面积______.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,若∠BAC=50°,∠ABC=60°.求∠DAC和∠BOA的度数.2、已知直线AB∥CD,EF是截线,点M在直线AB、CD之间.(1)如图1,连接GM,HM.求证:;(2)如图2,在的角平分线上取两点M、Q,使得.请直接写出与之间的数量关系;(3)如图3,若射线GH平分,点N在MH的延长线上,连接GN,若,,求的度数.3、如图,Rt△ABC中,,D、E分别是AB、AC上的点,且.求证:ED⊥AB4、如图,点C,B分别在直线MN,PQ上,点A在直线MN,PQ之间,MN∥PQ.(1)如图1,求证:∠A=∠MCA+∠PBA;(2)如图2,过点C作CD∥AB,点E在PQ上,∠ECM=∠ACD,求证:∠A=∠ECN;(3)在(2)的条件下,如图3,过点B作PQ的垂线交CE于点F,∠ABF的平分线交AC于点G,若∠DCE=∠ACE,∠CFB=∠CGB,求∠A的度数.5、已知:如图,△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠AEC的度数. -参考答案-一、单选题1、B【解析】【分析】根据三角形外角的性质可直接进行求解.【详解】解:∵,,∴;故选B.【点睛】本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.2、C【解析】【分析】根据三角形具有稳定性进行求解即可.【详解】解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,故选C.【点睛】本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.3、B【解析】【分析】根据∠DFE=α得到∠FDE+∠FED,再根据角平分线的性质求出∠BDE+∠CED=360°-2α,利用外角的性质得到∠ADE+∠AED=2α,最后根据三角形内角和求出结果.【详解】解:∵∠DFE=α,∴∠FDE+∠FED=180°-α,由角平分线的定义可知:∠BDF=∠FDE,∠CEF=∠FED,∴∠BDE+∠CED=2∠FDE+2∠FED=360°-2α,∴∠ADE+∠AED=180°-∠BDE +180°-∠CED=2α,∴∠A=180°-(∠ADE+∠AED)=180°-2α,故选B.【点睛】本题考查了角平分线的定义,三角形内角和,三角形外角的性质,解题的关键是利用角平分线得到相等的角,根据内角和进行计算.4、C【解析】【分析】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【详解】解:∵一个三角形的两边长分别为3和8,∴5<第三边长<11,则第三边长可能是:8.故选:C.【点睛】此题主要考查了三角形的三边关系,正确得出第三边的取值范围是解题关键.5、A【解析】【分析】满足两个条件:①经过点B;②垂直AC,由此即可判断.【详解】解:根据垂线段的定义可知,A选项中线段BE,是点B作线段AC所在直线的垂线段,故选:A.【点睛】本题考查作图-复杂作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6、D【解析】【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”,这样就可求出第三边长的范围,进而选出答案【详解】解:设它的第三条边的长度为xcm,依题意有 ,即,故只有D符合题意,故选:D.【点睛】本题考查的是三角形的三边关系,掌握三角形三边关系:三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.7、B【解析】【分析】利用三角形的高的定义可得答案.【详解】解:∵选项B是过顶点C作的AB边上的高,∴有△ABC的高的是选项B,故选:B.【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.8、D【解析】【分析】由题意直接根据高线的定义进行分析判断即可得出结论.【详解】解:A、B、C均不是高线.故选:D.【点睛】本题考查的是作图-基本作图,熟练掌握三角形高线的定义即过一个顶点作垂直于它对边所在直线的线段,叫三角形的高线是解答此题的关键.9、D【解析】【分析】可以设∠ECB'=α,∠FCD'=β,根据折叠可得∠DCE=∠D'CE,∠BCF=∠B'CF,进而可求解.【详解】解:设∠ECB'=α,∠FCD'=β,根据折叠可知:∠DCE=∠D'CE,∠BCF=∠B'CF,∵∠ECF=21°,∴∠D'CE=21°+β,∠B'CF=21°+α,∵四边形ABCD是正方形,∴∠BCD=90°,∴∠D'CE+∠ECF+∠B'CF=90°∴21°+β+21°+21°+α=90°,∴α+β=27°,∴∠B'CD'=∠ECB'+∠ECF+∠FCD'=α+21°+β=21°+27°=48°则∠B'CD'的度数为48°.故选:D.【点睛】本题考查了正方形与折叠问题,解决本题的关键是熟练运用折叠的性质.10、A【解析】【分析】由三角形的外角的性质可得再结合角平分线的性质进行等量代换可得从而可得答案.【详解】解: ∠ABC与∠ACE的平分线相交于点D, 故选A【点睛】本题考查的是三角形的角平分线的性质,三角形的外角的性质,熟练的利用三角形的外角的性质结合等量代换得到是解本题的关键.二、填空题1、110°##110度【解析】【分析】根据∠A=40°求出∠ABC+∠ACB=140°,根据角平分线的定义求出∠EBC+∠BCD=70°,进而求出∠BOC=110°,最后根据对顶角相等即可求解.【详解】解:如图,∵∠A=40°,∴∠ABC+∠ACB=180°-∠A=140°,∵BE、CD分别是 △ABC的内角平分线,∴∠EBC=∠ABC,∠BCD==∠ACB,∴∠EBC+∠BCD=∠ABC+∠ACB=(∠ABC+∠ACB)=70°,∴∠BOC=180°-(∠EBC+∠BCD)=110°,∴∠DOE=∠BOC=110°.故答案为:110°【点睛】本题考查了三角形内角和定理,角平分线的定义,对顶角相等等知识,熟知相关知识,运用整体思想求出∠EBC+∠BCD=70°是解题关键.2、120【解析】【分析】根据三角形的外角性质,可得 ,即可求解.【详解】解:∵ 是 的外角,∴ ,∵∠A=50°,∠B=70°,∴ .故答案为:120【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.3、80°##80度【解析】【分析】先根据,,得出,可证AD∥BC,再证∠BAD=∠BCD,得出∠AEB=∠F,然后证∠ABC=2∠CBE=2∠F,得出∠ADC=2∠F,利用三角形内角和得出∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F,根据平角得出∠AEB+∠CED=180°-∠BEC=180°-80°=100°,列方程∠F+180°-5∠F=100°求出∠F=20°即可.【详解】解:∵,∴∠ABC+∠BCD=180°,∵∴,∴AD∥BC,∵,∴∠BAD+∠ADC=180°,∠BAF+∠F=180°,∵∠ADC+∠BCD=180°,∴∠BAD=∠BCD,∵,∴,∵∠BAF=∠BAD+∠DAF,∴∠BAF+∠AEB=180°,∴∠AEB=∠F,∵AD∥BC,∴∠CBE=∠AEB,∵BE平分,∴∠ABC=2∠CBE=2∠F,∴∠ADC=2∠F,∵,在△CED中,∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F,∵,∴∠AEB+∠CED=180°-∠BEC=180°-80°=100°,∴∠F+180°-5∠F=100°,解得∠F=20°,∴,故答案为80°.【点睛】本题考查平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,掌握平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,关键是证出∠ADC=2∠F.4、钝角【解析】【分析】根据三角形内角和定理,当可求得可得到答案.【详解】解:,当时,可得,则为钝角三角形,故答案为:钝角.【点睛】本题主要考查三角形内角和定理,解题的关键是掌握三角形的三个内角和为.5、【解析】【分析】根据三角形中线性质,平分三角形面积,先利用AD为△ABC中线可得S△ABD=S△ACD,根据E为AD中点,,根据BF为△BEC中线,即可.【详解】解:∵AD为△ABC中线∴S△ABD=S△ACD,又∵E为AD中点,故,∴,∵BF为△BEC中线,∴cm2.故答案为:1cm2.【点拨】本题考查了三角形中线的性质,牢固掌握并会运用是解题关键.三、解答题1、∠DAC=20°,∠BOA=125°【解析】【分析】先求出∠C=70°,因为AD是高,所以∠ADC=90°,又因为∠C=70°,所以∠DAC度数可求;因为∠BAC=50°,∠C=70°,所以∠BAO=25°,∠ABC=60°,BF是∠ABC的角平分线,则∠ABO=30°,故∠BOA的度数可求.【详解】解:∵∠BAC=50°,∠ABC=60°∴∠C=180°-∠BAC-∠ABC=70°∵AD⊥BC∴∠ADC=90°∵∠C=70°∴∠DAC=180°−90°−70°=20°;∵∠BAC=50°,∠C=70°∴∠BAO=25°,∠ABC=60°∵BF是∠ABC的角平分线∴∠ABO=30°∴∠BOA=180°−∠BAO−∠ABO=180°−25°−30°=125°.【点睛】本题考查了同学们利用角平分线的性质解决问题的能力,有利于培养同学们的发散思维能力.2、 (1)见解析(2)∠GQH+∠GMH=180°,理由见解析(3)60°【解析】【分析】(1)过点M作MI∥AB交EF于点I,可得∠AGM=∠GMI,再由AB∥CD,可得MI∥CD,从而得到∠CHM=∠HMI,即可求证;(2)过点M作MP∥AB交EF于点P,同(1)可得到∠PMH=∠CHM,∠GMP=∠AGM,再由MH平分∠GHC,可得∠PHM=∠CHM,从而得到∠PHM=∠PMH,再由,可得∠HGQ=∠GMP,从而得到∠GMH=∠HGQ+∠PHM,然后根据三角形的内角和定理,即可求解;(3)过点M作MK∥AB交EF于点K,设 ,可得 ,同(1),可得∠GMH=∠GMK+HMK= ,再由,可得,然后根据三角形的内角和定理,可得 ,再由AB∥CD,可得∠AGH+∠CHG=180°,即可求解.(1)证明:如图,过点M作MI∥AB交EF于点I,∵MI∥AB,∴∠AGM=∠GMI,∵AB∥CD,∴MI∥CD,∴∠CHM=∠HMI,∴∠GMH=∠HMI +∠GMI= ∠AGM +∠CHM;(2)解:∠GQH+∠GMH=180°,理由如下:如图,过点M作MP∥AB交EF于点P,∵MP∥AB,∴∠GMP=∠AGM,∵AB∥CD,∴MP∥CD,∴∠PMH=∠CHM,∵MH平分∠GHC,∴∠PHM=∠CHM,∴∠PHM=∠PMH,∵,∴∠HGQ=∠GMP,∵∠GMH=∠GMP+∠PMH,∴∠GMH=∠HGQ+∠PHM,∵∠GQH+∠HGQ+∠PHM=180°,∴∠GQH+∠GMH=180°(3)解:如图,过点M作MK∥AB交EF于点K,设 ,∵GH平分∠BGM,∴ ,∵MK∥AB,∴ ,∵AB∥CD,∴MK∥CD,∴∠HMK=∠CHM,∴∠GMH=∠GMK+HMK= ,∵,∴,即,∵∠GMH+∠N+∠MGN=180°,∴ ,解得: ,∵AB∥CD, ∴∠AGH+∠CHG=180°,即 ,∴ ,∴∠MHG=60°.【点睛】本题主要考查了平行的判定和性质,三角形的内角和定理,角平分线的定义,做适当辅助线,构造平行线,并熟练掌握平行的判定和性质定理,三角形的内角和定理,角平分线的定义是解题的关键.3、见解析【解析】【分析】根据三角形内角和定理可得,从而可得结论.【详解】解:在中,,在中, ∵ ∴ ∴ED⊥AB【点睛】本题主要考查了垂直的判定,证明是解答本题的关键.4、(1)见解析;(2)见解析;(3)72°.【解析】【分析】(1)过点A作平行线,证出三条直线互相平行,由平行得出与∠ACM和∠ABP相等的角即可得出结论;(2)由CD∥AB,可得同旁内角互补,再结合∠ECM与∠ECN的邻补角关系,可得结论;(3)延长CA交PQ于点H,先证明∠MCA=∠ACE=∠ECD,∠ABP=∠NCD,再设∠MCA=∠ACE=∠ECD=x,由(1)可知∠CFB=∠FCN+∠FBQ,从而∠CFB=270-2x,列出方程解得x值,则不难求得答案.【详解】解:(1)证明:过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠A=∠MCA+∠PBA;(2)∵CD∥AB,∴∠A+∠ACD=180°,∵∠ECM+∠ECN=180°,又∠ECM=∠ACD,∴∠A=∠ECN;(3)如图,延长CA交PQ于点H,∵∠ECM=∠ACD,∠DCE=∠ACE,∴∠MCA=∠ACE=∠ECD,∵MN∥PQ,∴∠MCA=∠AHB,∵∠CAB=∠AHB+∠PBA,且由(2)知∠CAB=∠ECN,∴∠ABP=∠NCD,设∠MCA=∠ACE=∠ECD=x,由(1)可知∠CFB=∠FCN+∠FBQ,∴∠CFB=270-2x,由(1)可知∠CGB=∠MCG+∠GBP,∴∠CGB=135°−x,∴270°−2x= (135°−x) ,解得:x=54°,∴∠AHB=54°,∴∠ABP=∠NCD=180°-54°×3=18°,∴∠CAB=54°+18°=72°.【点睛】本题考查了平行线的性质及一元一次方程在计算问题中的应用,三角形的内角和定理以及三角形的外角性质,理清题中的数量关系并正确列式是解题的关键.5、∠AEC=115°【解析】【分析】利用三角形的内角和定理求解 再利用三角形的高的含义求解 再结合角平分线的定义求解 再利用三角形的内角和定理可得答案.【详解】解: ∠BAC=80°,∠B=60°, AD⊥BC, AE平分∠DAC, 【点睛】本题考查的是三角形的高,角平分线的含义,三角形的内角和定理的应用,熟练的运用三角形的高与角平分线的定义结合三角形的内角和定理得到角与角之间的关系是解本题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试综合训练题,共23页。试卷主要包含了三角形的外角和是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试测试题,共21页。试卷主要包含了如图,在中,AD,下列叙述正确的是,如图,在中,若点使得,则是的等内容,欢迎下载使用。
这是一份初中冀教版第九章 三角形综合与测试课后测评,共27页。试卷主要包含了如图,直线l1l2,被直线l3等内容,欢迎下载使用。