冀教版七年级下册第九章 三角形综合与测试同步训练题
展开冀教版七年级数学下册第九章 三角形达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各图中,有△ABC的高的是( )
A. B.
C. D.
2、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,,则( ).
A.45° B.60° C.35° D.40°
3、以下长度的线段能和长度为2,6的线段组成三角形的是( )
A.2 B.4 C.6 D.9
4、如图,在中,,,将沿直线翻折,点落在点的位置,则的度数是( )
A.30° B.45° C.60° D.75°
5、如图所示,一副三角板叠放在一起,则图中等于( )
A.105° B.115° C.120° D.135°
6、将一副三角板按不同位置摆放,下图中与互余的是( )
A. B.
C. D.
7、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是( )
A.5米 B.10米 C.15米 D.20米
8、如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是( )
A.BE是△ABD的中线 B.BD是△BCE的角平分线
C.∠1=∠2=∠3 D.S△AEB=S△EDB
9、如图,BD是的角平分线,,交AB于点E.若,,则的度数是( )
A.10° B.20° C.30° D.50°
10、如图,△AOB绕点O逆时针旋转65°得到△COD,若∠COD=30°,则∠BOC的度数是( )
A.30° B.35° C.45° D.60°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、边长为1的小正方形组成如图所示的6×6网格,点A,B,C,D,E,F,G,H都在格点上.其中到四边形ABCD四个顶点距离之和最小的点是_________.
2、不等边三角形的最长边是9,最短边是4,第三边的边长是奇数,则第三边的长度是___.
3、如图,已知∠A=60°,∠B=20°,∠C=30°,则∠BDC的度数为_____.
4、在中,若,则_______.
5、我们将一副三角尺按如图所示的位置摆放,则_______°.
三、解答题(5小题,每小题10分,共计50分)
1、用无刻度的直尺作图,保留作图痕迹.
(1)在图1中,BD是△ABC的角平分线,作△ABC的平分内角∠BCA的角平分线;
(2)在图2中,AD是∠BAC的角平分线,作△ABC的∠BCA相邻的外角的角平分线.
2、如图,在△ABC中,∠BAC=40°,∠B=75°,AD是△ABC的角平分线,求∠ADB的度数.
3、已知,如图,在中,点E,F分别为边上的动点,和相交于点D,.
(1)如果分别为上的高线时,求的度数;
(2)如果分别平分时,求的度数.
4、如图,AD是∠BAC的平分线,CE是△ADC边AD上的高,若∠BAC=80°,∠ECD=25°,求∠ACB的度数.
5、如图,Rt△ABC中,,D、E分别是AB、AC上的点,且.求证:ED⊥AB
-参考答案-
一、单选题
1、B
【解析】
【分析】
利用三角形的高的定义可得答案.
【详解】
解:∵选项B是过顶点C作的AB边上的高,
∴有△ABC的高的是选项B,
故选:B.
【点睛】
此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.
2、A
【解析】
【分析】
由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.
【详解】
解:由折叠得∠B=∠BCD,
∵∠A+∠B+∠ACB=180°,,,
∴65°+2∠B+25°=180°,
∴∠B=45°,
故选:A.
【点睛】
此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.
3、C
【解析】
【分析】
根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.
【详解】
解:设第三边的长为,已知长度为2,6的线段,
根据三角形的三边关系可得,,即,根据选项可得
∴
故选C
【点睛】
本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.
4、C
【解析】
【分析】
设交于点,是射线上的一点,设,根据三角形的外角的性质可得,进而根据平角的定义即可求得,即可求得.
【详解】
如图,设交于点,是射线上的一点,
折叠,
设
即
故选C
【点睛】
本题考查了折叠的性质,三角形的外角的性质,掌握三角形外角的性质是解题的关键.
5、A
【解析】
【分析】
根据直角三角板各角的度数和三角形外角性质求解即可.
【详解】
解:如图,∠C=90°,∠DAE=45°,∠BAC=60°,
∴∠CAO=∠BAC-∠DAE=60°-45°=15°,
∴=∠C+∠CAO=90°+15°=105°,
故选:A.
【点睛】
本题考查三角板中的度数计算、三角形的外角性质,熟知三角板各角度数,掌握三角形的外角性质是解答的关键.
6、A
【解析】
【分析】
根据平角的定义可判断A,D,根据同角的余角相等可判断B,根据三角形的外角的性质可判断C,从而可得答案.
【详解】
解:选项A:根据平角的定义得:∠α+90°+∠β=180°,
∴∠α+∠β=90°, 即∠α与∠β互余;故A符合题意;
选项B:如图,
故B不符合题意;
选项C:如图,
故C不符合题意;
选项D:
故D不符合题意;
故选A
【点睛】
本题考查的是平角的定义,互余的含义,同角的余角相等,三角形的外角的性质,掌握“与直角三角形有关的角度的计算”是解本题的关键.
7、A
【解析】
【分析】
根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.
【详解】
解:连接AB,
根据三角形的三边关系定理得:
15﹣10<AB<15+10,
即:5<AB<25,
∴A、B间的距离在5和25之间,
∴A、B间的距离不可能是5米;
故选:A.
【点睛】
本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.
8、C
【解析】
【分析】
根据三角形中线、角平分线的定义逐项判断即可求解.
【详解】
解:A、∵AE=DE,
∴BE是△ABD的中线,故本选项不符合题意;
B、∵BD平分∠EBC,
∴BD是△BCE的角平分线,故本选项不符合题意;
C、∵BD平分∠EBC,
∴∠2=∠3,
但不能推出∠2、∠3和∠1相等,故本选项符合题意;
D、∵S△AEB=×AE×BC,S△EDB=×DE×BC,AE=DE,
∴S△AEB=S△EDB,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形中线、角平分线的定义,熟练掌握三角形中,连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.
9、B
【解析】
【分析】
由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.
【详解】
解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,
∴∠ABD=∠BDC−∠A=50°−30°=20°,
∵BD是△ABC的角平分线,
∴∠DBC=∠ABD=20°,
∵DE∥BC,
∴∠EDB=∠DBC=20°,
故选:B.
【点睛】
本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.
10、B
【解析】
【分析】
由旋转的性质可得∠AOC=65°,由∠AOB=30°,即可求∠BOC的度数.
【详解】
解:∵△AOB绕点O逆时针旋转65°得到△COD,
∴∠AOC=65°,
∵∠AOB=30°,
∴∠BOC=∠AOC−∠AOB=35°.
故选:B.
【点睛】
本题考查了旋转的性质,三角形内角和定理,熟练运用旋转的性质是本题的关键.
二、填空题
1、E
【解析】
【分析】
到四边形ABCD四个顶点距离之和最小的点是对角线的交点,连接对角线,直接判断即可.
【详解】
如图所示,连接BD、AC、GA、GB、GC、GD,
∵,,
∴到四边形ABCD四个顶点距离之和最小是,该点为对角线的交点,
根据图形可知,对角线交点为E,
故答案为:E.
【点睛】
本题考查了三角形三边关系,解题关键是通过连接辅助线,运用三角形三边关系判断点的位置.
2、7
【解析】
【分析】
由题意根据三角形的三边关系即可求得第三边的范围,从而由不等边三角形和奇数的定义确定第三边的长度.
【详解】
解:设第三边长是c,则9﹣4<c<9+4,
即5<c<13,
又∵第三边的长是奇数,不等边三角形的最长边为9,最短边为4,
∴c=7.
故答案为:7.
【点睛】
本题考查三角形的三边关系,注意掌握已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.
3、110°##110度
【解析】
【分析】
延长BD交AC于点E,根据三角形的外角性质计算,得到答案.
【详解】
延长BD交AC于点E,
∵∠DEC是△ABE的外角,∠A=60°,∠B=20°,
∴∠DEC=∠A+∠B=80°,
则∠BDC=∠DEC+∠C=110°,
故答案为:110°.
【点睛】
本题考查了三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和,作辅助线DE是解题的关键.
4、65°##65度
【解析】
【分析】
由三角形的内角和定理,得到,即可得到答案;
【详解】
解:在中,,
∵,
∴,
∴;
故答案为:65°.
【点睛】
本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于360°.
5、45
【解析】
【分析】
利用三角形的外角性质分别求得∠α和∠β的值,代入求解即可.
【详解】
解:根据题意,∠A=60°,∠C=30°,∠D=∠DBG=45°,∠ABC=∠DGB=∠DGC=90°,
∴∠β=∠DBG+∠C=75°,∠α=∠DGC+∠C=120°,
∴∠α−∠β=120°-75°=45°,
故答案为:45.
【点睛】
本题考查了三角形的外角性质,解答本题的关键是明确题意,找到三角板中隐含的角的度数,利用数形结合的思想解答.
三、解答题
1、(1)见解析;(2)见解析.
【解析】
【分析】
(1)作∠BAC的平分线交BD于点O,作射线CO交AB于E,线段CE即为所求;
(2)作△ABC的∠ABC的外角的平分线交AD与D,作射线CD,射线CD即为所求.
【详解】
(1)如图1,线段CE为所求;
(2)如图2,线段CD为所求.
【点睛】
本题主要考查了基本作图、三角形的外角、三角形的角平分线等知识点,理解三角形的内角平分线交于一点成为解答本题的关键.
2、85°
【解析】
【分析】
根据角平分线定义求出,根据三角形内角和定理得出,代入求出即可.
【详解】
解:平分,,
,
,
.
【点睛】
本题考查了三角形内角和定理,角平分线定义的应用,解题的关键是注意:三角形的内角和等于.
3、(1)100゜;(2)130゜
【解析】
【分析】
(1)利用直角三角形两锐角互余、三角形外角的性质,可求得结果;
(2)由角平分线的性质及三角形内角和定理可求得∠EBC+∠FCB的度数,从而可求得结果的度数.
【详解】
(1)∵BE⊥AC,CF⊥AB
∴∠AEB=∠CFB=90゜
∴∠ABE=90゜ -∠A=10゜
∴∠BDC=∠CFB+∠ABE=90゜+10゜=100゜
(2)∵BE、CF分别平分∠ABC、∠ACB
∴,
∵∠ABC+∠ACB=180゜ -∠A=100゜
∴
∴
【点睛】
本题考查了三角形内角和定理、三角形外角的性质、角平分线的性质,熟练运用它们是解答的关键.
4、75°
【解析】
【分析】
根据角平分线的定义求出∠DAC的度数,所以EDCA可求,进而求出∠ACB的度数.
【详解】
解:∵AD是∠BAC的平分线,∠BAC=80°,
∴∠DAC=40°,
∵CE是△ADC边AD上的高,
∴∠ACE=90°﹣40°=50°,
∵∠ECD=25°
∴∠ACB=50°+25°=75°.
【点睛】
本题主要考查了三角形的内角和定理.解题的关键是掌握三角形的内角和定理以及角平分线的性质.
5、见解析
【解析】
【分析】
根据三角形内角和定理可得,从而可得结论.
【详解】
解:在中,,
在中,
∵
∴
∴ED⊥AB
【点睛】
本题主要考查了垂直的判定,证明是解答本题的关键.
七年级下册第九章 三角形综合与测试同步练习题: 这是一份七年级下册第九章 三角形综合与测试同步练习题,共23页。试卷主要包含了已知△ABC的内角分别为∠A,如图,在中,AD,如图,点D等内容,欢迎下载使用。
初中冀教版第九章 三角形综合与测试一课一练: 这是一份初中冀教版第九章 三角形综合与测试一课一练,共22页。试卷主要包含了下列图形中,不具有稳定性的是等内容,欢迎下载使用。
冀教版七年级下册第九章 三角形综合与测试课时作业: 这是一份冀教版七年级下册第九章 三角形综合与测试课时作业,共21页。