初中数学冀教版七年级下册第九章 三角形综合与测试当堂达标检测题
展开
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试当堂达标检测题,共20页。试卷主要包含了如图,在中,若点使得,则是的,定理等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )A.1个 B.2个 C.3个 D.4个2、下列长度的三条线段能组成三角形的是( )A.3,4,8 B.5,6,11 C.5,6,10 D.4,5,93、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )A.105° B.120° C.135° D.150°4、如图,在中,若点使得,则是的( )A.高 B.中线 C.角平分线 D.中垂线5、以下长度的三条线段,能组成三角形的是( )A.2,3,5 B.4,4,8 C.3,4.8,7 D.3,5,96、如图,BD是的角平分线,,交AB于点E.若,,则的度数是( )A.10° B.20° C.30° D.50°7、下列四个图形中,线段BE是△ABC的高的是( )A. B.C. D.8、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.证法1:如图,∵∠A=70°,∠B=63°,且∠ACD=133°(量角器测量所得)又∵133°=70°+63°(计算所得)∴∠ACD=∠A+∠B(等量代换).证法2:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).下列说法正确的是( )A.证法1用特殊到一般法证明了该定理B.证法1只要测量够100个三角形进行验证,就能证明该定理C.证法2还需证明其他形状的三角形,该定理的证明才完整D.证法2用严谨的推理证明了该定理9、如果一个三角形的两边长都是6cm,则第三边的长不能是( )A.3cm B.6cm C.9cm D.13cm10、如图,在ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为( )A.110 B.100 C.55 D.45第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是 _____.2、已知在△ABC中,∠A+∠B<∠C,则△ABC是______三角形.(填“直角”、“锐角”或“钝角”)3、如图,把纸片沿DE折叠,使点A落在图中的处,若,,则的大小为______.4、在中,,,,那么是______三角形.(填“锐角”、“钝角”或“直角” )5、如图,在△ABC中,∠C=62°,△ABC两个外角的角平分线相交于G,则∠G的度数为_____.三、解答题(5小题,每小题10分,共计50分)1、如图:是一个大型模板,设计要求与相交成角,与相交成角,现小燕测得,她就断定这块模板是合格的,这是为什么?2、完成下面推理填空:如图,已知:于D,于G,.求证:AD平分.解:∵于D,(已知),∴(____①_____),∴(同位角相等,两直线平行),∴_____②___(两直线平行,同位角相等)∠1=∠2(____③_____),又∵(已知),∴∠2=∠3(_____④______),∴AD平分(角平分线的定义).3、如图,ABCD,∠BAC的角平分线AP与∠ACD的角平分线CP相交于点P,求证:AP⊥CP.4、如图,在△ABC中,∠BAC=40°,∠B=75°,AD是△ABC的角平分线,求∠ADB的度数.5、平行线是平面几何中最基本、也是非常重要的图形.在解决某些几何问题时,若能根据问题的需要,添加适当的平行线,往往能使证明顺畅、简洁.请根据上述思想解决问题:(1)如图(1),ABCD,试判断∠B,∠D与∠E的关系;(2)如图(2),已知ABCD,在∠ACD的角平分线上取两个点M、N,使得∠AMN=∠ANM,求证:∠CAM=∠BAN. -参考答案-一、单选题1、C【解析】【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.∵c是奇数,∴c=3或5或7,有3个值.则对应的三角形有3个.故选:C.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.2、C【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,得,A、3+4=7<8,不能组成三角形,该选项不符合题意;B、5+6=11,不能够组成三角形,该选项不符合题意;C、5+6=11>10,能够组成三角形,该选项符合题意;D、4+5=9,不能够组成三角形,该选项不符合题意.故选:C.【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3、B【解析】【分析】由题意易得,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:,∴;故选B.【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.4、B【解析】【分析】根据三角形的中线定义即可作答.【详解】解:∵BD=DC,∴AD是△ABC的中线,故选:B.【点睛】本题考查了三角形的中线概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.5、C【解析】【分析】由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+4=8,不能组成三角形,不符合题意;C、3+4.8>7,能组成三角形,符合题意;D、3+5<9,不能组成三角形,不符合题意.故选:C.【点睛】本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.6、B【解析】【分析】由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.【详解】解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,∴∠ABD=∠BDC−∠A=50°−30°=20°,∵BD是△ABC的角平分线,∴∠DBC=∠ABD=20°,∵DE∥BC,∴∠EDB=∠DBC=20°,故选:B.【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.7、D【解析】【分析】根据三角形高的画法知,过点作边上的高,垂足为,其中线段是的高,再结合图形进行判断.【详解】解:线段是的高的图是选项.故选:D.【点睛】本题主要考查了三角形的高,解题的关键是掌握三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.8、D【解析】【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.9、D【解析】【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”,这样就可求出第三边长的范围,进而选出答案【详解】解:设它的第三条边的长度为xcm,依题意有 ,即,故只有D符合题意,故选:D.【点睛】本题考查的是三角形的三边关系,掌握三角形三边关系:三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.10、B【解析】【分析】根据三角形的外角的性质计算即可.【详解】解:由三角形的外角的性质可知,∠ACD=∠A+∠B=100°,故选:B.【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键.三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角.二、填空题1、在三角形中,两边之和大于第三边【解析】【分析】根据三角形两边之和大于第三边进行求解即可.【详解】解:∵点A、B在直线l上,点C是直线l外一点,∴A、B、C可以构成三角形,∴由三角形三边的关系:在三角形中,两边之和大于第三边可以得到:CA+CB>AB,故答案为:在三角形中,两边之和大于第三边.【点睛】本题主要考查了三角形三边的关系,熟知三角形中两边之和大于第三边是解题的关键.2、钝角【解析】【分析】根据三角形内角和定理,当可求得可得到答案.【详解】解:,当时,可得,则为钝角三角形,故答案为:钝角.【点睛】本题主要考查三角形内角和定理,解题的关键是掌握三角形的三个内角和为.3、##32度【解析】【分析】利用折叠性质得,,再根据三角形外角性质得,利用邻补角得到,则,然后利用进行计算即可.【详解】解:∵,∴,∵纸片沿DE折叠,使点A落在图中的A'处,∴,,∵,∴,∴,∴.故答案为:.【点睛】本题考查了折叠的性质,三角形外角的性质,三角形内角和定理等,理解题意,熟练掌握综合运用各个知识点是解题关键.4、钝角【解析】【分析】根据三角形按角的分类可得结论.【详解】解:在中,,,,,是钝角三角形,故答案为:钝角.【点睛】本题考查三角形的分类,熟知三角形按角分为锐角三角形、直角三角形和钝角三角形是解题关键.5、59°##59度【解析】【分析】先利用三角形内角和定理求出∠CAB+∠CBA=180°-∠C=118°,从而利用三角形外角的性质求出∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,再由角平分线的定义求出,由此求解即可.【详解】解:∵∠C=62°,∴∠CAB+∠CBA=180°-∠C=118°,∵∠DAB=∠C+∠CBA,∠EBA=∠C+∠CAB,∴∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,∵△ABC两个外角的角平分线相交于G,∴,,∴,∴∠G=180°-∠GAB-∠GBA=59°,故答案为:59°.【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,熟知相关知识是解题的关键.三、解答题1、合格,理由见解析【解析】【分析】延长,相交于点F,延长,相交于点E,然后根据三角形内角和定理求解即可.【详解】解:如图,延长,相交于点F,延长,相交于点E,∵, ∴, ∵, ∴, ∴这块模板是合格的.【点睛】本题主要考查了三角形内角和定理,解题的关键在于能够熟练掌握三角形内角和定理.2、垂直的定义;∠E=∠3;两直线平行,内错角相等;等量代换【解析】【分析】根据平行线的判定与性质进行解答即可.【详解】解:∵AD⊥BC于D,EG⊥BC(已知),∴∠ADC=∠EGC=90°(垂直的定义),∴EG∥AD(同位角相等,两直线平行),∴∠E=∠3(两直线平行,同位角相等)∠1=∠2(两直线平行,内错角相等),又∵∠E=∠1(已知),∴∠2=∠3(等量代换),∴AD平分∠BAC(角平分线的定义).故答案为:垂直的定义;∠E=∠3;两直线平行,内错角相等;等量代换.【点睛】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.3、见解析【解析】【分析】利用角平分线的性质及平行线的性质,通过等量代换能证明出,即可证明AP⊥CP.【详解】证明:∵ABCD(已知),∴∠BAC+∠ACD=180°(两直线平行,同旁内角互补),∵AP、CP分别平分∠BAC、∠ACD(已知),∴∠CAP=∠BAC,∠ACP=∠ACD,∴∠CAP+∠ACP=∠BAC+∠ACD=(∠BAC+∠ACD)=90°,又∵∠CAP+∠ACP+∠P=180°,∴∠P=90°,∴AP⊥CP.【点睛】本题考查了角平分线的性质、平行线的性质,解题的关键是掌握角平分线的性质进行求解.4、85°【解析】【分析】根据角平分线定义求出,根据三角形内角和定理得出,代入求出即可.【详解】解:平分,,,,.【点睛】本题考查了三角形内角和定理,角平分线定义的应用,解题的关键是注意:三角形的内角和等于.5、(1)∠BED=∠B+∠D;(2)证明见详解.【解析】【分析】(1)作EF∥AB,证明AB∥EF∥CD,得到∠B=∠BEF,∠D=∠DEF,即可证明∠BED=∠B+∠D;(2)根据(1)结论得到∠N=∠BAN+∠DCN,进而得到∠AMN=∠BAN+∠DCN,根据三角形外角定理得到∠AMN=∠ACM+∠CAM,∠BAN+∠DCN=∠ACM+∠CAM,再根据∠DCN=∠CAN,即可证明∠CAM=∠BAN.【详解】解:如图1,作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∵∠BED=∠BEF+∠DEF,∴∠BED=∠B+∠D;(2)证明:∵AB∥CD,∴由(1)得∠N=∠BAN+∠DCN,∵∠AMN=∠ANM,∴∠AMN=∠BAN+∠DCN,∵∠AMN是△ACM外角,∴∠AMN=∠ACM+∠CAM,∴∠BAN+∠DCN=∠ACM+∠CAM,∵CN平分∠ACD,∴∠DCN=∠CAN,∴∠CAM=∠BAN.【点睛】本题考查了平行线的性质,角平分线的定义,三角形的外角定理等知识,熟知相关定理并根据题意添加辅助线进行角的转化是解题关键.
相关试卷
这是一份冀教版七年级下册第九章 三角形综合与测试当堂检测题,共22页。试卷主要包含了三角形的外角和是等内容,欢迎下载使用。
这是一份初中第九章 三角形综合与测试随堂练习题,共27页。试卷主要包含了如图,为估计池塘岸边A,如图,点D等内容,欢迎下载使用。
这是一份初中数学第九章 三角形综合与测试单元测试精练,共20页。试卷主要包含了如图,在中,若点使得,则是的,如图,等内容,欢迎下载使用。