![2021-2022学年度冀教版七年级数学下册第九章 三角形单元测试试卷(含答案详解)第1页](http://img-preview.51jiaoxi.com/2/3/12767303/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版七年级数学下册第九章 三角形单元测试试卷(含答案详解)第2页](http://img-preview.51jiaoxi.com/2/3/12767303/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版七年级数学下册第九章 三角形单元测试试卷(含答案详解)第3页](http://img-preview.51jiaoxi.com/2/3/12767303/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学第九章 三角形综合与测试单元测试巩固练习
展开
这是一份初中数学第九章 三角形综合与测试单元测试巩固练习,共25页。试卷主要包含了如图,在中,AD,如图,已知,,,则的度数为等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下图中能体现∠1一定大于∠2的是( )A. B.C. D.2、三角形的外角和是( )A.60° B.90° C.180° D.360°3、如图,和相交于点O,则下列结论不正确的是( )A. B. C. D.4、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外面时,此时测得∠1=112°,∠A=40°,则∠2的度数为( )A.32° B.33° C.34° D.38°5、如图,一扇窗户打开后,用窗钩AB可将其固定( )A.三角形的稳定性B.两点之间线段最短C.四边形的不稳定性D.三角形两边之和大于第三边6、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=( )A.30° B.40° C.50° D.60°7、在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于( )A.65° B.80° C.115° D.50°8、如图,在中,AD、AE分别是边BC上的中线与高,,CD的长为5,则的面积为( )A.8 B.10 C.20 D.409、如图,已知,,,则的度数为( )A.155° B.125° C.135° D.145°10、如图,四边形ABCD是梯形,,与的角平分线交于点E,与的角平分线交于点F,则与的大小关系为( )A. B. C. D.无法确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,△ABC中,点D在BC的延长线上,,与的平分线相交于点,得;与的平分线相交于点,得;…;与的平分线相交于点,得,=__________.2、如图,在中,D、E分别为AC、BC边上一点,AE与BD交于点F.已知,,且的面积为60平方厘米,则的面积为______平方厘米;如果把“”改为“”其余条件不变,则的面积为______平方厘米(用含n的代数式表示).3、如图,将△ABC平移到△A’B’C’的位置(点B’在AC边上),若∠B=55°,∠C=100°,则∠AB’A’的度数为_____°.4、如图,E为△ABC的BC边上一点,点D在BA的延长线上,DE交AC于点F,∠B=46°,∠C=30°,∠EFC=70°,则∠D=______.5、如图,______.三、解答题(5小题,每小题10分,共计50分)1、如图所示,AB//CD,G为AB上方一点,E、F分别为AB、CD上两点,∠AEG=4∠GEB,∠CFG=2∠GFD,∠GEB和∠GFD的角平分线交于点H,求∠G+∠H的值.2、如图,FA⊥EC,垂足为E,∠F=40°,∠C=20°,求∠FBC的度数.3、如图:是一个大型模板,设计要求与相交成角,与相交成角,现小燕测得,她就断定这块模板是合格的,这是为什么?4、如图,在△ABC中,∠ABC=30°,∠C=80°,AD是△ABC的角平分线,BE是△ABD中AD边上的高,求∠ABE的度数.5、已知,△ABC中,∠C>∠B,AE平分∠BAC,M是AE上一点,MN⊥BC于N.(1)如图①,当点M与A重合时,若∠B=40°,∠C=80°,求∠EMN的度数;(2)如图②,当点M在线段AE上(不与A,E重合),用等式表示∠EMN与∠B,∠C之间的数量关系,并证明你的结论;(3)如图③,当点M在线段AE的延长线上,连接MC,过点A做MC的垂线,交MC的延长线于点F,交BC的延长线上于点D.①依题意补全图形;②若∠B=α°,∠ACB=β°,∠D=γ°,则∠AMC= °.(用含α,β,γ的式子表示) -参考答案-一、单选题1、C【解析】【分析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;B、如图, 若两线平行,则∠3=∠2,则 若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C.【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.2、D【解析】【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】解:如图,,,又,,即三角形的外角和是,故选:D.【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.3、B【解析】【分析】根据两直线相交对顶角相等、三角形角的外角性质即可确定答案.【详解】解:选项A、∵∠1与∠2互为对顶角,∴∠1=∠2,故选项A不符合题意;选项B、∵∠1=∠B+∠C,∴∠1>∠B,故选项B符合题意;选项C、∵∠2=∠D+∠A,∴∠2>∠D,故选项C不符合题意;选项D、∵,,∴,故选项D不符合题意;故选:B.【点睛】本题主要考查了对顶角的性质、平行线的性质和三角形内角和、外角的性质,能熟记对顶角的性质是解此题的关键.4、A【解析】【分析】由折叠的性质可知,再由三角形外角的性质即可求出的大小,再次利用三角形外角的性质即可求出的大小.【详解】如图,设线段和线段交于点F.由折叠的性质可知.∵,即,∴.∵,即,∴.故选A.【点睛】本题考查折叠的性质,三角形外角的性质.利用数形结合的思想是解答本题的关键.5、A【解析】【分析】由三角形的稳定性即可得出答案.【详解】一扇窗户打开后,用窗钩AB可将其固定,故选:A.【点睛】本题考查了三角形的稳定性,加上窗钩AB构成了△AOB,而三角形具有稳定性是解题的关键.6、A【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【详解】∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM−∠CBP=50°−20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.7、C【解析】【分析】根据题意画出图形,求出∠ABC+∠ACB =130°,根据角平分线的定义得到∠CBD=∠ABC,∠ECB=∠ACB,再根据三角形内角和定理和角的代换即可求解.【详解】解:如图,∵∠A=50°,∴∠ABC+∠ACB=180°-∠A=130°,∵BD、CE分别是∠ABC、∠ACB的平分线,∴∠CBD=∠ABC,∠ECB=∠ACB,∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- (∠ABC+∠ACB)=180°- ×130°=115°.故选:C【点睛】本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.8、C【解析】【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.【详解】解:∵AD是边BC上的中线,CD的长为5,∴CB=2CD=10,的面积为,故选:C.【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.9、B【解析】【分析】根据三角形外角的性质得出,再求即可.【详解】解:∵,∴,∵,∴,∴;故选:B.【点睛】本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.10、B【解析】【分析】由AD∥BC可得∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,由角平分线的性质可得∠AEB=90°,∠DFC=90°,由三角形内角和定理可得到∠1=∠2=90°.【详解】解:∵AD∥BC,∴∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,∵∠DAB与∠ABC的角平分线交于点E,∠CDA与∠BCD的角平分线交于点F,∴∠BAE=∠BAD,∠ABE=∠ABC,∠CDF=∠ADC,∠DCF=∠BCD,∴∠BAE+∠ABE=(∠BAD+∠ABC)=90°,∠CDF+∠DCF=(∠ADC+∠BCD) =90°,∴∠1=180°-(∠BAE+∠ABE)= 90°,∠2=∠CDF+∠DCF= 90°,∴∠1=∠2=90°,故选:B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形内角和定理,灵活运用这些性质进行推理是本题的关键.二、填空题1、【解析】【分析】结合题意,根据角平分线、三角形外角、三角形内角和的性质,得,同理得;再根据数字规律的性质分析,即可得到答案.【详解】解:根据题意,,与的平分线交于点,∴∠A1BC=,∠ACA1=,∴,∵,∴,∵,∴=,同理,得;;;…,∴.故答案为:.【点睛】本题考查了三角形性质和数字规律的知识;解题的关键是熟练掌握三角形内角和、三角形外角、角平分线、数字规律的性质,从而完成求解.2、 6 【解析】【分析】连接CF,依据AD=CD,BE=2CE,且△ABC的面积为60平方厘米,即可得到S△BCD=S△ABC=30,S△ACE=S△ABC=20,设S△ADF=S△CDF=x,依据S△ACE=S△FEC+S△AFC,可得,解得x=6,即可得出△ADF的面积为6平方厘米;当BE=nCE时,运用同样的方法即可得到△ADF的面积.【详解】如图,连接CF,∵AD=CD,BE=2CE,且△ABC的面积为60平方厘米,∴S△BCD=S△ABC=30,S△ACE=S△ABC=20,设S△ADF=S△CDF=x,则S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x)=,∵S△ACE=S△FEC+S△AFC,∴,解得x=6,即△ADF的面积为6平方厘米;当BE=nCE时,S△AEC=,设S△AFD=S△CFD=x,则S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x),∵S△ACE=S△FEC+S△AFC,∴,解得,即△ADF的面积为平方厘米;故答案为:【点睛】本题主要考查了三角形的面积的计算,解决问题的关键是作辅助线,根据三角形之间的面积关系得出结论.解题时注意:三角形的中线将三角形分成面积相等的两部分.3、25【解析】【分析】先根据三角形内角和定理求出∠A=25°,然后根据平移的性质得到,则.【详解】解:∵∠B=55°,∠C=100°,∴∠A=180°-∠B-∠C=25°,由平移的性质可得,∴,故答案为:25.【点睛】本题主要考查了三角形内角和定理,平移的性质,平行线的性质,解题的关键在于能够熟练掌握平移的性质.4、34°##34度【解析】【分析】根据题意先求∠DAC,再依据△ADF三角形内角和180°可得答案.【详解】解:∵∠B=46°,∠C=30°,∴∠DAC=∠B+∠C=76°,∵∠EFC=70°,∴∠AFD=70°,∴∠D=180°-∠DAC-∠AFD=34°,故答案为:34°.【点睛】本题考查三角形内角和定理及三角形一个外角等于不相邻的两个内角的和,解题的关键是掌握三角形内角和定理.5、180度##【解析】【分析】如图,连接 记的交点为 先证明再利用三角形的内角和定理可得答案.【详解】解:如图,连接 记的交点为 故答案为:【点睛】本题考查的是三角形的内角和定理,作出合适的辅助线构建三角形是解本题的关键.三、解答题1、∠G+∠H=36°.【解析】【分析】先设,,由题意可得,,由,,从而求出;根据题意得, , 从而得到的值.【详解】解:设,,由题意可得,,, 由,,解得,;由靴子图AEGFC知,,即由靴子图AEHFC知,,即即,,【点睛】本题考查平行线的性质,解题的关键是设,,由题意得到的关系式,正确将表示成的形式.2、110°【解析】【分析】根据三角形的内角和可得∠A的度数,再利用外角的性质可得∠FBC的度数.【详解】解:在△AEC 中,FA⊥EC,∴∠AEC=90°,∴∠A=90°-∠C=70°.∵∠FBC是△ABF的一个外角,∴∠FBC=∠A+∠F=70°+40°=110°.【点睛】本题考查三角形的内角和与外角的性质,求出∠A的度数是解题关键.3、合格,理由见解析【解析】【分析】延长,相交于点F,延长,相交于点E,然后根据三角形内角和定理求解即可.【详解】解:如图,延长,相交于点F,延长,相交于点E,∵, ∴, ∵, ∴, ∴这块模板是合格的.【点睛】本题主要考查了三角形内角和定理,解题的关键在于能够熟练掌握三角形内角和定理.4、55°【解析】【分析】先根据三角形内角和定理及角平分线的性质求出∠BAD度数,由AE⊥BE可求出∠AEB=90°,再由三角形的内角和定理即可解答.【详解】解:∵∠ABC=30°,∠C=80°,∴∠BAC=180°-30°-80°=70°,∵AD是∠BAC的平分线,∴∠BAD=×70°=35°,∵AE⊥BE,∴∠AEB=90°,∴∠ABE=180°-∠AEB-∠BAE=180°-90°-35°=55°.【点睛】本题考查的是角平分线的定义,高的定义及三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.5、(1);(2),见解析;(3)①见解析;②【解析】【分析】(1)根据三角形内角和求出∠BAC=180°-40°-80°=60°.根据AE平分∠BAC,∠CAE=∠BAC=30°,利用三角形内角和∠C=80°,∠MNC=90°,得出∠CMN=10°即可;(2)∠EMN=(∠C-∠B);证法1:如图,作AD⊥BC于D.根据AE平分∠BAC,可得∠EAC=∠BAC=(180°-∠B-∠C).根据,Rt△DAC中,∠DAC=90°-∠C,得出∠EAD=∠EAC-∠DAC=(∠C-∠B).根据AD⊥BC,MN⊥BC,可得AD//MN,得出∠EMN=∠EAD=(∠C-∠B).证法2:根据 AE平分∠BAC,得出∠EAC=∠BAC=(180°-∠B-∠C),根据三角形内角和得出∠AEC=180°-∠EAC-∠C=90°-(∠C-∠B)即可;(3)①依题意补全图形,当点M在线段AE的延长线上,连接MC,过点A作AD⊥MC交MC的延长线于点F,交BC的延长线上于点D,如图; ②∠AMC=.过A作AG⊥BC于G,MN⊥BC于N,可得MN∥AG,得出∠NME=∠GAE=(∠ACB-∠B),根据MC⊥AD,得出∠CFD=∠CNM=90°,可证∠NMC=∠D,根据两角差∠AMC=∠NMC-∠NME=∠D-∠NME=∠D-∠ACB+∠B即可【详解】解:(1)∵∠B=40°,∠C=80°,∴∠BAC=180°-40°-80°=60°.又∵AE平分∠BAC,∴∠CAE=∠BAC=30°,∵∠C=80°,∠MNC=90°,∴∠CMN=10°,∴∠EMN=∠CAE-∠CMN=30°-10°=20°;(2)∠EMN=(∠C-∠B). …证法1:如图,作AD⊥BC于D.∵AE平分∠BAC,∴∠EAC=∠BAC=(180°-∠B-∠C).∵,∴Rt△DAC中,∠DAC=90°-∠C,∴∠EAD=∠EAC-∠DAC=(180°-∠B-∠C)-(90°-∠C)=(∠C-∠B).∵AD⊥BC,MN⊥BC,∴AD//MN,∴∠EMN=∠EAD=(∠C-∠B). 证法2:∵AE平分∠BAC,∴∠EAC=∠BAC=(180°-∠B-∠C),∴∠AEC=180°-∠EAC-∠C=90°-(∠C-∠B),∴∠EMN=90°-∠AEC=(∠C-∠B).(3)①依题意补全图形,当点M在线段AE的延长线上,连接MC,过点A作AD⊥MC交MC的延长线于点F,交BC的延长线上于点D.如图; ②∠AMC=.过A作AG⊥BC于G,MN⊥BC于N,∴MN∥AG,∴∠NME=∠GAE=(∠ACB-∠B),∵MC⊥AD,∴∠CFD=∠CNM=90°,∵∠FCD=∠NCM,∴∠NMC=180°-∠CNM-∠NCM=180°-∠CFD-∠FCD=∠D,∴∠AMC=∠NMC-∠NME=∠D-∠NME=∠D-∠ACB+∠B,∵∠B=α°,∠ACB=β°,∠D=γ°,∴∠AMC=γ°-β°+α°.【点睛】本题考查三角形内角和,角平分线定义,平行线性质,角的和差,补全图形,垂线定义,掌握三角形内角和,角平分线定义,平行线性质,角的和差,作图语句,垂线定义是解题关键.
相关试卷
这是一份初中冀教版第九章 三角形综合与测试一课一练,共22页。试卷主要包含了下列图形中,不具有稳定性的是等内容,欢迎下载使用。
这是一份初中第九章 三角形综合与测试课时练习,共25页。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试巩固练习,共18页。试卷主要包含了下列图形中,不具有稳定性的是,若一个三角形的三个外角之比为3等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)