冀教版第十章 一元一次不等式和一元一次不等式组综合与测试练习
展开第十章一元一次不等式和一元一次不等式组专题测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在二元一次方程12x+y=8中,当y<0时,x的取值范围是( ).
A. B. C. D.
2、在数轴上表示不等式的解集正确的是( ).A. B.
C. D.
3、如果x>y,则下列不等式正确的是( )
A.x﹣1<y﹣1 B.5x<5y C. D.﹣2x>﹣2y
4、若关于的一元一次不等式组的解集为,且关于的方程的解为非负整数,则符合条件的所有整数的和为( )
A.2 B.7 C.11 D.10
5、若x<y,则下列不等式中不成立的是( )
A.x-5<y-5 B.x<y C.x-y<0 D.-5x<-5y
6、若整数m使得关于x的不等式组 有且只有三个整数解,且关于x,y的二元一次方程组 的解为整数(x,y均为整数),则符合条件的所有m的和为( )
A.27 B.22 C.13 D.9
7、若,则下列式子中,错误的是( )
A. B. C. D.
8、某矿泉水每瓶售价1.5元,现甲、乙两家商场 给出优 惠政策:甲商场全部9折,乙商场20瓶以上的部分8折.老师要小明去买一些矿泉水,小明想了想觉得到乙商场购买比较优惠.则小明需要购买的矿泉水的数量x的取值范围是( )
A.x>20 B.x>40 C.x≥40 D.x<40
9、如果不等式组的解集是,那么a的值可能是( )
A. B.0 C.﹣0.7 D.1
10、若关于的方程有负分数解,关于的不等式组的解集为,则符合条件的所有整数的个数为( )
A.3 B.4 C.6 D.7
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若减去-(2x-3)所得的差是非负数,用不等式表示:__________.
2、若,则______(填“>”或“=”或“<”).
3、判断下列不等式组是否为一元一次不等式组:
(1)__________;(2)__________;
(3) __________;(4)__________
4、关于x的不等式组恰好有3个整数解,那么m的取值范围是 _____.
5、不等式3x﹣1<5的解集是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、临近春节,各大商场内虎年吉祥物、红灯笼、春联等商品需求量大增,各大工厂为应对“年货”模式,提高商品生产量以满足广大群众的需求,某工厂计划租用A、B两种型号的货车运送一批年货商品到外地进行销售,已知3辆A型货车和4辆B型货车一次可以运送850箱商品,6辆A型货车和5辆B型货车一次可以运送1400箱商品.
(1)求一辆A型货车和一辆B型货车一次分别可以运送多少箱商品;
(2)工厂计划租用A、B两种型号的货车共15辆,A型货车的租车费用为每辆500元,B型货车的租车费用为每辆300元,若运送的商品不少于1850箱,且租车费用小于6500元,请问工厂应该选择哪种租车方案所需费用最少,最少费用是多少元?
2、解不等式组,并写出不等式组的整数解
3、敕勒川,阴山下,天似穹庐,笼盖四野.天苍苍,野茫茫,风吹草地见牛羊,河套地区地势平坦、土地肥沃,适合大规模农牧.现有一片草场,草匀速生长,如果放牧360只羊,4周可以将草全部吃完.如果放牧210只羊,9周才能将草全部吃完.(假设每只羊每周吃的草量相等)
(1)求这片草场每周生长的草量和牧民进驻前原有草量的比;
(2)如果牧民准备在这片草场放牧8周,那么最多可以放牧多少只羊?
4、解不等式:,并把它的解集在数轴上表示出来,再写出最大负整数解.
5、解不等式组,并写出它的所有非负整数解.
-参考答案-
一、单选题
1、C
【解析】
略
2、C
【解析】
【分析】
根据不等式解集的表示方法依次判断.
【详解】
解:在数轴上表示不等式的解集的是C,
故选:C.
【点睛】
此题考查了在数轴上表示不等式的解集,正确掌握不等式解集的表示方法是解题的关键.
3、C
【解析】
【分析】
根据不等式的性质解答.①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.
【详解】
解:A.∵x>y,
∴x﹣1>y﹣1,故本选项不符合题意;
B.∵x>y,
∴5x>5y,故本选项不符合题意;
C.∵x>y,
∴,故本选项符合题意;
D.∵x>y,
∴﹣2x<﹣2y,故本选项不符合题意;
故选:C.
【点睛】
此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键.
4、B
【解析】
【分析】
先解关于的一元一次不等式组,再根据其解集是,得小于5;再解方程,根据其有非负整数解,得出的值,再求积即可.
【详解】
解:由,得:,
由,得:,
不等式组的解集为,
,
解得;
解关于的方程得:,
方程的解为非负整数,
或3或6或9,
解得或2或3.5或5,
所以符合条件的所有整数的和,
故选:B.
【点睛】
此题考查了解一元一次不等式组及一元一次方程的解,熟练掌握各自的解法是解本题的关键.
5、D
【解析】
【分析】
根据不等式的性质逐项分析即可.
【详解】
解:A. ∵x<y,∴x-5<y-5,故不符合题意;
B. ∵x<y,∴,故不符合题意;
C. ∵x<y,∴x-y<0,故不符合题意;
D. ∵x<y,∴,故符合题意;
故选D.
【点睛】
本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.
6、A
【解析】
【分析】
先求出不等式组的解集为,根据不等式组有且只有三个整数解,可得 ,再解出方程组,可得,再根据x,y均为整数,可得取,即可求解.
【详解】
解:
解不等式①,得: ,
解不等式②,得: ,
∴不等式的解集为,
∵不等式组有且只有三个整数解,
∴ ,
解得: ,
∵m为整数,
∴ 取5,6,7,8,9,10,11,12,13,14,15,
,解得: ,
∴当取 时,x,y均为整数,
∴符合条件的所有m的和为 .
故选:A
【点睛】
本题主要考查了解一元一次不等组和二元一次方程组,及其整数解,熟练掌握解一元一次不等组和二元一次方程组的方法是解题的关键.
7、D
【解析】
【分析】
利用不等式的基本性质逐一判断即可.
【详解】
解:A. 若,则正确,故A不符合题意;
B. 若,则正确,故B不符合题意;
C. 若,则,正确,故C不符合题意;
D. 若d,则,所以D错误,故D符合题意,
故选:D.
【点睛】
本题考查不等式的性质,掌握相关知识是解题关键.
8、B
【解析】
略
9、C
【解析】
【分析】
根据不等式组解集的确定方法:大大取大可得,再在选项中找出符合条件的数即可.
【详解】
解:∵不等式组的解集是,
∴a≤,
而,
故选:C.
【点睛】
本题考查一元一次不等式组的解法,理解一元一次不等式组的解集的意义是正确解答的前提.
10、B
【解析】
【分析】
把a看作已知数表示出不等式组的解集,根据已知解集确定出a的范围,将a的整数解代入方程,检验方程解为负分数确定出所有a的值,即可求出积.
【详解】
解:解不等式,得:,
解不等式,得:,
不等式组的解集为,
,
解得,
解方程得,,
∵方程有负分数解,
∴,
∴,
∴的取值为,
∴整数的值为-3,-2,-1,0,1,2,3,
把代入方程得:,即,符合题意;
把代入方程得:,即,不符合题意;
把代入方程得:,即,符合题意;
把代入方程得:,即,不符合题意;
把代入方程得:,即,符合题意;
把代入方程得:,即,不符合题意;
把代入方程得:,即,符合题意.
符合条件的整数取值为,,1,3,
故选:B.
【点睛】
此题考查了解一元一次不等式组,以及解一元一次方程,熟练掌握解不等式组和方程的基本技能是解本题的关键.
二、填空题
1、##
【解析】
【分析】
根据题意由减去-(2x-3)所得的差是非负数,即可列出不等式,解出不等式即可.
【详解】
解:依题意得:-[-(2x-3)]≥0,
即+2x-3≥0.
故答案为:.
【点睛】
本题考查由实际问题抽象出一元一次不等式以及整式的加减,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.
2、<
【解析】
【分析】
根据不等式的性质:①不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变,据此变形即可得.
【详解】
解:∵,
∴,
∴,
故答案为:.
【点睛】
题目主要考查不等式的性质,深刻理解不等式的性质进行变形是解题关键.
3、 不是 是 不是 是
【解析】
略
4、1≤m<2
【解析】
【分析】
表示出不等式组的解集,根据不等式组恰好有3个整数解,确定出的范围即可.
【详解】
解:不等式组整理得,
关于的不等式组恰好有3个整数解,
整数解为0,1,2,
,
解得:.
故答案为:.
【点睛】
本题考查了一元一次不等式组的整数解,解题的关键是熟练掌握一元一次不等式组的解法.
5、
【解析】
【分析】
先移项,再合并同类项,最后把未知数的系数化“1”即可.
【详解】
解:3x﹣1<5,
解得:
故答案为:
【点睛】
本题考查的是一元一次不等式的解法,掌握“解一元一次不等式的步骤”是解本题的关键.
三、解答题
1、 (1)1辆A型车满载时一次可运150箱,1辆B型车满载时一次可运100箱.
(2)工厂应该选择租A种货车7辆,B型货车是8辆,费用为5900元.
【解析】
【分析】
(1)设1辆A型车一次可运x箱,1辆B型车一次可运柑橘y箱,根据“用3辆A型车和4辆B型车一次可运850箱;用6辆A型车和5辆B型车一次可运1400箱”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设租用A型货车m辆,B型货车(15﹣m)辆,根据题意建立不等式组求出其解可确定租车方案;再分别计算费用即可.
(1)
解:设1辆A型车一次可运x箱,1辆B型车一次可运y箱,
依题意,得:,
解得:.
答:1辆A型车一次可运150箱,1辆B型车一次可运100箱.
(2)
解:设租用A型货车m辆,B型货车(15﹣m)辆,由题意,得
,
解得,,
∵m为整数,
∴m=7,8,9.
∴有3种方案;
方案一:A种货车7辆,B型货车是8辆,费用为(元);
方案二:A种货车8辆,B型货车是7辆,费用为(元);
方案一:A种货车9辆,B型货车是6辆,费用为(元);
答:工厂应该选择租A种货车7辆,B型货车是8辆,费用为5900元.
【点睛】
本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是找准数量关系,正确列出二元一次方程组和一元一次不等式组.
2、不等式组的解集为,不等式组的整数解为0,1.
【解析】
【分析】
先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集,然后写出它的整数解即可得.
【详解】
解:,
解不等式①得:,
解不等式②得:,
则不等式组的解集为,
不等式组的整数解为0,1.
【点睛】
本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.
3、 (1)这片草场每周生长的草量和牧民进驻前原有草量的比为
(2)最多可以放牧225只羊
【解析】
【分析】
(1)设每只羊每周吃的草量为1份,这片草场牧民进驻前原有草量份,这片草场每周生长的草量为份,根据等量关系列出方程组即可;
(2)设可以放牧只羊,列出一元一次不等式,即可求解.
(1)
解:设每只羊每周吃的草量为1份,这片草场牧民进驻前原有草量份,这片草场每周生长的草量为份,
依题意得:,
解得:,
.
答:这片草场每周生长的草量和牧民进驻前原有草量的比为.
(2)
设可以放牧只羊,
依题意得:,
解得:.
答:最多可以放牧225只羊.
【点睛】
本题主要考查二元一次方程组以及一元一次不等式的实际应用,找出数量关系,列出方程组和不等式是解题的关键.
4、,见解析,不等式的最大负整数解为
【解析】
【分析】
先去分母,移项合并同类项求出不等式的解集,再根据数轴上数的特点表示不等式的解集及确定整数解.
【详解】
解:,
去分母得:,
移项合并得:,
则不等式的最大负整数解为.
【点睛】
此题考查了解一元一次不等式,利用数轴表示不等式的解集,以及确定不等式的整数解,正确掌握解一元一次不等式的解法是解题的关键.
5、-4≤x<2;0,1
【解析】
【分析】
分别求出不等式组中两不等式的解集,找出两解集的公共部分求出不等式组的解集,进而求出非负整数解即可.
【详解】
解:,
由①得:x<2,
由②得:x≥-4,
∴不等式组的解集为-4≤x<2,
则不等式组的非负整数解为0,1.
【点睛】
此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.
初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试当堂检测题: 这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试当堂检测题,共19页。试卷主要包含了已知x=1是不等式,不等式的最小整数解是等内容,欢迎下载使用。
初中数学第十章 一元一次不等式和一元一次不等式组综合与测试一课一练: 这是一份初中数学第十章 一元一次不等式和一元一次不等式组综合与测试一课一练,共17页。试卷主要包含了下列说法中错误的是等内容,欢迎下载使用。
初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步达标检测题: 这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步达标检测题,共18页。试卷主要包含了下列命题中,假命题是,不等式4x-8≤0的解集是,,那么,下列各式等内容,欢迎下载使用。