冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步训练题
展开
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步训练题,共16页。试卷主要包含了下列各式,不等式的最大整数解是,不等式的最小整数解是等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中,是一元一次不等式的是( )A.5-3<8 B.2x-1< C.≥8 D.+2x≤182、下列四个说法:①若a=﹣b,则a2=b2;②若|m|+m=0,则m<0;③若﹣1<m<0,则m2<﹣m;④两个四次多项式的和一定是四次多项式.其中正确说法的个数是( )A.4 B.3 C.2 D.13、若,,则下列不等式不一定成立的是( )A. B. C. D.4、下列各式:①1﹣x:②4x+5>0;③x<3;④x2+x﹣1=0,不等式有( )个.A.1 B.2 C.3 D.45、如果a>b,那么下列结论中,正确的是( )A.a﹣1>b﹣1 B.1﹣a>1﹣b C. D.﹣2a>﹣2b6、不等式的最大整数解是( )A.0 B. C. D.7、不等式的最小整数解是( )A. B.3 C.4 D.58、如果a<b,c<0,那么下列不等式成立的是( )A.a+c<b B.a﹣c>b﹣cC.ac+1<bc+1 D.a(c﹣2)<b(c﹣2)9、如果x>y,则下列不等式正确的是( )A.x﹣1<y﹣1 B.5x<5y C. D.﹣2x>﹣2y10、若不等式(m-2)x>n的解集为x>1,则m,n满足的条件是( ).A.m=n-2且m>2 B.m=n-2且m<2C.n=m-2且m>2 D.n=m-2且m<2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果关于x的不等式mx﹣2m>x﹣2的解集是x<2,那么m的取值范围是______.2、某种商品的进价为500元,售价为750元,由于换季,商店准备打折销售,但要保持该商品的利润率不低于20%,那么最多可以打______折.3、定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式﹣3⊕x<15的解为 _____.4、如果a>b,那么﹣2a___﹣2b.(填“>”或“<”)5、在不等式组的解集中,最大的整数解是______.三、解答题(5小题,每小题10分,共计50分)1、今年“六一”前夕,某文具店花费2200元采购了A、B两种型号的文具进行销售,其进价和售价之间的关系如表:型号进价(元/个)售价(元/个)A型1012B型1520 若两种型号的文具按表中售价全部售完,则该商店可以盈利600元.(1)问该商店当初购进A、B两种型号文具各多少个?(2)“六一”当天,A、B两种型号文具各剩下20%还未卖出,文具店老板在第二天降价出售,且两种型号文具每件降了同样的价格,要使得这批文具售完后的总盈利不低于546元,那么这两种型号的文具每件最多降多少元?2、小明早上七点骑自行车从家出发,以每小时18千米的速度到距家7千米的学校上课,行至距学校1千米的地方时,自行车突然发生故障,小明只得改为步行前往学校,如果他想在7点30分赶到学校,那么他每小时步行的速度至少是多少千米?3、解不等式组:.4、解不等式组,并写出它的所有非负整数解.5、解不等式组,并写出不等式组的整数解 -参考答案-一、单选题1、D【解析】【分析】一元一次不等式必须具备三个条件:(1)只含有一个未知数;(2)未知数的最高次数是1;(3)分母中不含有未知数,即不等号两边都是整式.根据一元一次不等式的定义逐项判断即可.【详解】A:不含有未知数,不是一元一次不等式,故本选项不符合题意;B:不是整式,故本选项不符合题意;C:不是整式,故本选项不符合题意;D:是只含有1个未知数,并且未知数的最高次数是1,用不等号连接的整式,是一元一次不等式,故本选项符合题意.故选:D.【点睛】本题考查一元一次不等式的定义, 一元一次不等式必须具备三个条件:(1)只含有一个未知数;(2)未知数的最高次数是1;(3)分母中不含有未知数,即不等号两边都是整式.2、C【解析】【分析】根据题意分别利用相反数的性质以及绝对值的代数意义和多项式的加法进行判断即可.【详解】解:①若a=﹣b,则a2=b2,说法正确;②若|m|+m=0,则m 0,说法错误;③若﹣1<m<0,则m2<﹣m,说法正确;④两个四次多项式的和不一定是四次多项式,说法错误;①③正确,共有2个.故选:C.【点睛】本题考查相反数的性质和不等式性质以及绝对值的代数意义和多项式的加法,熟练掌握相关的概念是解题的关键.3、D【解析】【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、若,,则,故本选项正确,不符合题意;B、若,,则,故本选项正确,不符合题意;C、若,则 ,若,则,故本选项正确,不符合题意;D、若,,当 时,,故本选项错误,符合题意;故选:D【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.4、B【解析】【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:根据不等式的定义可知,所有式子中是不等式的是②4x+5>0; ③x<3,有2个.故选:B.【点睛】本题主要考查了不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子叫作不等式.5、A【解析】【分析】直接利用不等式的基本性质判断即可得出答案.【详解】解:A、a>b两边都减去1得a﹣1>b﹣1,故本选项正确;B、a>b两边都乘以﹣1再加1得1﹣a<1﹣b,故本选项错误;C、a>b两边都乘以得,,故本选项错误;D、a>b两边都乘以﹣2得,﹣2a<﹣2b,故本选项错误.故选:A.【点睛】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.6、D【解析】【分析】先将不等式进行求解,然后根据解集即可得出最大整数解.【详解】解:,去分母可得:,去括号得:,合并同类项得:,系数化为1得:,即不等式的最大整数解是,故选:D.【点睛】题目主要考查解不等式的方法步骤,熟练掌握解不等式的方法步骤是解题关键.7、C【解析】【分析】先求出不等式解集,即可求解.【详解】解: 解得: 所以不等式的最小整数解是4.故选:C.【点睛】本题考查了一元一次不等式的解法,正确解不等式,求出解集是解决本题的关键.8、A【解析】【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.9、C【解析】【分析】根据不等式的性质解答.①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A.∵x>y,∴x﹣1>y﹣1,故本选项不符合题意;B.∵x>y,∴5x>5y,故本选项不符合题意;C.∵x>y,∴,故本选项符合题意; D.∵x>y,∴﹣2x<﹣2y,故本选项不符合题意;故选:C.【点睛】此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键.10、C【解析】略二、填空题1、m<1【解析】【分析】根据不等式的基本性质,两边都除以后得到,可知,解之可得.【详解】解:,移项得,,∴,∵不等式的解集为,∴,即,故答案为:.【点睛】题目主要考查不等式的性质及解不等式,熟练掌握不等式的性质是解题关键.2、八##8【解析】【分析】设该商品打x折销售,根据利润=售价-进价,结合要保持利润不低于20%,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设该商品打x折销售,依题意得:750×-500≥500×20%,解得:x≥8.故答案为:八.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.3、【解析】【分析】根据题目中所给的新运算先进行化简,然后再解不等式求解即可.【详解】解:∵,,.∵,∴,∴.故答案为:.【点睛】题目主要考查整式的混合运算及解不等式,理解题中定义的新运算,熟练掌握解不等式的方法是解题关键.4、<【解析】【分析】根据不等式的性质得出即可.【详解】解:∵a>b,∴﹣2a<﹣2b,故答案为:<【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.5、4【解析】【分析】先求出不等式的解集,再求出不等式组的解集,找出不等式组的最大整数解即可.【详解】解: ,解不等式①得,x≥2,解不等式②得, ,∴不等式组的解集为,∴不等式组的最大整数解为4.故答案为:4.【点睛】本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.三、解答题1、 (1)该商店当初购进A型号文具100个,B型号文具80个(2)1.5元【解析】【分析】(1)设该商店当初购进A型号文具x个,B型号文具y个,根据用2200元购进的A、B两种型号的文具全部售出后可盈利600元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设这两种型号的文具每件降m元,利用这批文具售完后的总盈利=600﹣剩余文具的数量×每件降低的价格,结合使得这批文具售完后的总盈利不低于546元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.(1)解:(1)设该商店当初购进A型号文具x个,B型号文具y个,依题意得:, 解得:. 答:该商店当初购进A型号文具100个,B型号文具80个;(2)(2)设这两种型号的文具每件降m元,依题意得:600﹣(100+80)×20%m≥546,解得:m≤1.5.答:这两种型号的文具每件最多降1.5元.【点睛】此题考查了二元一次方程组的实际应用,一元一次不等式的实际应用,正确理解题意利用方程组或是不等式解决实际问题是解题的关键.2、小明每小时步行的速度至少是6千米.【解析】【分析】设小明步行的速度为x千米/时,利用路程=速度×时间,结合小明想在7点30分之前赶到学校,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设小明步行的速度为x千米/时,依题意得:(7-1)+(-)x≥7,解得:x≥6.答:每小时步行的速度至少是6千米.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.3、【解析】【分析】先求出两个不等式的解集,再求其公共解.【详解】解:,解不等式①得,,解不等式②得,,所以不等式组的解集是.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).4、-4≤x<2;0,1【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分求出不等式组的解集,进而求出非负整数解即可.【详解】解:,由①得:x<2,由②得:x≥-4,∴不等式组的解集为-4≤x<2,则不等式组的非负整数解为0,1.【点睛】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.5、不等式组的解集为,不等式组的整数解为0,1.【解析】【分析】先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集,然后写出它的整数解即可得.【详解】解:,解不等式①得:,解不等式②得:,则不等式组的解集为,不等式组的整数解为0,1.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.
相关试卷
这是一份数学七年级下册第八章 整式乘法综合与测试复习练习题,共17页。试卷主要包含了观察下列各式,下列计算正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试达标测试,共17页。试卷主要包含了下列不等式是一元一次不等式的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试综合训练题,共18页。试卷主要包含了现有甲,不等式的最大整数解是等内容,欢迎下载使用。