![2021-2022学年度冀教版八年级数学下册第二十章函数定向测评试题(含详细解析)01](http://img-preview.51jiaoxi.com/2/3/12765835/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版八年级数学下册第二十章函数定向测评试题(含详细解析)02](http://img-preview.51jiaoxi.com/2/3/12765835/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版八年级数学下册第二十章函数定向测评试题(含详细解析)03](http://img-preview.51jiaoxi.com/2/3/12765835/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十章 函数综合与测试同步练习题
展开冀教版八年级数学下册第二十章函数定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各曲线中,不表示y是x的函数的是( )
A. B.
C. D.
2、如图,已知在ABC中,AB=AC,点D沿BC自B向C运动,作BE⊥AD于E,CF⊥AD于F,则BE+CF的值y与BD的长x之间的函数图象大致是( )
A. B.
C. D.
3、如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是( )
A. B.
C. D.
4、如图1,在菱形ABCD中,AB=6,∠BAD=120°,点E是BC边上的一动点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H(a,b)是图象上的最低点,则a+b的值为( )
A. B. C. D.36
5、A,B两地相距30km,甲乙两人沿同一条路线从A地到B地.如图,反映的是两人行进路程y(km)与行进时间t(h)之间的关系,①甲始终是匀速运动,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时,④甲在出发5小时后被乙追上.以上说法正确的个数有( )
A.1个 B.2个 C.3个 D.4个
6、小明家、公园、图书馆依次在一条直线上,周末,小明和妈妈准备去公园放风筝,但是因为小明要先去图书馆还书,所以他们同时从家出发,并约定2小时后在公园碰头.小明先骑自行车匀速前往图书馆,到达图书馆还书后按原路原速返回公园并按照约定时间准时到达公园,妈妈则匀速步行前往公园,结果迟到半小时.如图是他们离家的距离y(km)与小明离家时间x(h)的函数图象,下列说法中错误的是( )
A.小明骑车的速度是20km/h
B.小明还书用了18min
C.妈妈步行的速度为2.4km/h
D.公园距离小明家8km
7、小明家到学校5公里,则小明骑车上学的用时t与平均速度v之间的函数关系式是( )
A. B. C. D.
8、下列各自线中表示y是x的函数的是( )
A. B.C.D.
9、函数y=中,自变量x的取值范围是( )
A.x>﹣3且x≠0 B.x>﹣3 C.x≥﹣3 D.x≠﹣3
10、今年暑假期间,小东外出爬山.他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为(分钟),所走的路程为s(米),s与t 之间的函数关系如图所示.下列说法错误的是( )
A.小明中途休息用了20分钟
B.小明休息前爬山的平均速度为每分钟 70米
C.小明在上述过程中所走的路程为3800米
D.小明休息前爬山的平均速度小于休息后爬山的平均速度
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、从中宁到银川的距离为130千米,一辆小轿车车以平均每小时80千米的速度从中宁出发到银川,则小轿车距银川的距离y(千米)与行驶时间x(时)的函数表达式为______.
2、如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p(m),一边长为a(m),那么在,,中是变量的是______.
3、如图是汽车加油站在加油过程中,加油器仪表某一瞬间的显示,加油过程中的常量是________.
4、已知函数f(x)=+x,则f()=_____.
5、周末,小明骑车从家前往公园,中途休息了一段时间.他从家出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.对于下列说法:①小明中途休息了2分钟;②小明休息前的骑车速度为每分钟400米;③小明所走的路程为4400米;④小明休息前的骑车速度小于休息后的骑车速度.其中正确结论的序号是____.
三、解答题(5小题,每小题10分,共计50分)
1、小亮想了解一根弹簧的长度是如何随所挂物体质量的变化而变化的,他把这根弹簧的上端固定,在其下端悬挂物体,下面是小亮测得的弹簧的长度y与所挂物体质量x的几组对应值:
所挂物体质量x/kg | 0 | 1 | 2 | 3 | 4 | 5 |
弹簧长度y/cm | 18 | 22 | 26 | 30 | 34 | 38 |
(1)上表所反映的变化过程中的两个变量,______是自变量,______是因变量;(请用文字语言描述)
(2)请直接写出y与x的关系式______;
(3)当弹簧长度为50cm(在弹簧承受范围内)时,求所挂重物的质量.(写出求解过程)
2、下列各曲线中哪些表示y是x的函数?
3、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数的性质及其应用的部分过程,请按要求完成下列各小题.
x | …… | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | …… |
y | …… | a | 4 | b | …… |
(1)请直接写出上述表中、的值:a= ,b= ;
(2)请在给出的图中补全该函数的大致图象;
(3)请根据这个函数的图象,写出该函数的一条性质: ;
(4)已知函数的图象如图所示,在的范围内,请直接不等式的解集: .(保留一位小数,误差不超过0.2).
4、下列式子中的y是x的函数吗?为什么?
(1); (2); (3).
请再举出一些函数的例子.
5、下图是某物体的抛射曲线图,其中表示物体与抛射点之间的水平距离,表示物体的高度.
(1)这个图象反映了哪两个变量之间的关系?
(2)根据图象填表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
|
|
|
|
|
|
|
(3)当距离取之间的一个确定的值时,相应的高度确定吗?
(4)高度可以看成距离的函数吗?
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据函数的意义进行判断即可.
【详解】
解:A、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;
B、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;
C、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;
D、图中,对于的每一个取值,可能有两个值与之对应,选项符合题意.
故选:D.
【点睛】
本题主要考查了函数的定义,解题的关键是掌握函数的定义,在定义中特别要注意,对于的每一个值,都有唯一的值与其对应.
2、D
【解析】
【分析】
根据题意过点A作AD′⊥BC于点D′,由题可知,当点D从点B运动到点C,即x从小变大时,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可得结论.
【详解】
解:过点A作AD′⊥BC于点D′,如图,
由题可知,当点D从点B运动到点C,即x从小变大中,AD也是由大变小再变大,
而△ABC的面积不变,又S=AD,即y是由小变大再变小,
结合选项可知,D选项是正确的;
故选:D.
【点睛】
本题主要考查动点问题的函数图象,题中没有给任何的数据,需要通过变化趋势进行判断.
3、B
【解析】
【分析】
根据动点P的正方形各边上的运动状态分类讨论△APD的面积即可;
【详解】
由点P运动状态可知,当0≤x≤4时,点P在AD上运动,△APD的面积为0;
当4≤x≤8时,点P在DC上运动,△APD的面积y=×4×(x﹣4)=2x﹣8;
当8≤x≤12时,点P在CB上运动,△APD的面积y=8;
当12≤x≤16时,点P在BA上运动,△APD的面积y=×4×(16﹣x)=﹣2x+32;
故选B.
【点睛】
本题主要考查了正方形的性质,动点问题与函数图象结合,准确分析计算是解题的关键.
4、A
【解析】
【分析】
从图2知,是的最小值,从图1作辅助线知;接下来求出,设与交于点,则求出,,最后得,所以,选.
【详解】
解:如下图,在边上取点,使得和关于对称,
连接,得,
连接,作,垂足为,
由三角形三边关系和垂线段最短知,
,
即有最小值,
菱形中,,,
在△中,,
解得,
是图象上的最低点
,
此时令与交于点,
由于,在△中,
,又,
,
又的长度为,图2中是图象上的最低点,
,
又,
,
故选:A.
【点睛】
本题考查动点及最小值问题,解题的关键是在于通过翻折点轴对称),然后利用三角形三边关系及垂线段最短原理,判断出最小值为.
5、B
【解析】
【分析】
根据甲、乙函数图像一个是直线一个不是直线即可判断①;根据甲从t=0开始出发,乙从t=0.5出发即可判断②③;根据甲、乙函数图像的交点的横坐标小于5可以判断④.
【详解】
解:由函数图像可知,甲的函数图像是一条直线,乙的函数图像不是直线,故甲是匀速运动,乙不是匀速运动,故①正确;
乙在第0.5小时出发,在第5小时到达,则乙的行进时间为5-0.5=4.5小时,故②错误;
根据函数图像可知乙比甲迟出发0.5小时,故③正确,
根据函数图像可知,当乙追上甲时,两人的行进路程相同,即在函数图像中的甲、乙函数图像的交点处乙追上甲,则乙追上甲时,甲出发的时间小于5小时,故④错误;
故选B.
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
6、D
【解析】
【分析】
根据小明1小时到达图书馆,图书馆距离家20千米,求出小明骑车的速度判断A选项;根据小明还书用了0.3小时判断B选项;设妈妈的速度为a千米/小时,根据小明走的路程+妈妈走的路程=20×2列出方程求出方程的解来判断C选项;根据妈妈的速度×妈妈所用的时间求公园距离小明家的距离来判断D选项.
【详解】
解:观察图象可知,小明1小时到达图书馆,图书馆距离家20千米,小明骑车的速度是20千米/小时,故A选项不符合题意;
1.3﹣1=0.3(小时)=18(分),故B选项不符合题意;
设妈妈的速度为a千米/小时,根据小明走的路程+妈妈走的路程=20×2得:2.5a+20×(2﹣1.7)=20×2,解得a=2.4,故C选项不符合题意;
2.4×2.5=6(千米),故D选项符合题意;
故选:D.
【点睛】
本题考查了函数的图象,求出妈妈的速度是解题的关键.
7、D
【解析】
【分析】
根据速度,时间与路程的关系得出,变形即可.
【详解】
解:根据速度,时间与路程的关系得
∴.
故选D.
【点睛】
本题考查列函数关系式,掌握速度,时间与路程的关系得出是解题关键.
8、C
【解析】
【分析】
根据函数的定义(一般的,在一个变化过程中,假设有两个变量,如果对于任意一个都有唯一确定的一个和它对应,那么就称是自变量,是的函数)逐项判断即可得.
【详解】
解:A、一个的值对应两个或三个的值,则此项不符题意;
B、一个的值对应一个或两个的值,则此项不符题意;
C、任意一个都有唯一确定的一个和它对应,则此项符合题意;
D、一个的值对应一个或两个的值,则此项不符题意;
故选:C.
【点睛】
本题考查了函数,掌握理解函数的概念是解题关键.
9、B
【解析】
【分析】
根据二次根式和分式有意义的条件:被开方数大于等于0,分母不为0列式计算即可.
【详解】
解:∵函数y=,
∴,解得:x>﹣3.
故选:B.
【点睛】
本题考查函数基本知识,解题的关键是掌握二次根式和分式有意义的条件.
10、D
【解析】
【分析】
根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800−2800)米,爬山的总路程为3800米,根据路程、速度、时间之间的关系进行解答即可.
【详解】
解:A、小明中途休息用了60−40=20分钟,正确,不符合题意;
B、小明休息前爬山的速度为2800÷40=70(米/分钟),正确,不符合题意;
C、小明在上述过程中所走的路程为3800米,正确,不符合题意;
D、小明休息前爬山的速度为2800÷40=70(米/分钟),小明休息后爬山的速度是(3800−2800)÷(100−60)=25(米/分钟),小明休息前爬山的平均速度大于休息后爬山的平均速度,错误,符合题意;
故选:D.
【点睛】
本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.
二、填空题
1、y=130−80x##y=-80x+130
【解析】
【分析】
根据题意列出函数关系式.
【详解】
解:小轿车距银川的距离y(千米)与行驶时间x(时)的函数表达式为:y=130−80x,
故答案为:y=130−80x.
【点睛】
本题考查的是函数关系式的确定,根据题意正确列出函数关系式是解题的关键.
2、和
【解析】
【分析】
由题意根据篱笆的总长确定,即可得到周长、一边长及面积中的变量.
【详解】
解:篱笆的总长为60米,
周长是定值,而面积和一边长是变量,
故答案为:和.
【点睛】
本题考查常量与变量的知识,解题的关键是能够根据篱笆总长不变确定定值,然后确定变量.
3、单价
【解析】
【分析】
常量是指在变化过程中,数值始终不变的量
【详解】
解:加油过程中,单价×数量=总价,此时,单价是常量,数量和金额是变量.
故答案为:单价
【点睛】
本题考查常量的定义,牢记相关的知识点是解题关键.
4、
【解析】
【分析】
根据题意直接把x=代入解析式进行计算即可求得答案.
【详解】
解:∵函数f(x)=+x,
∴f()=+=2,
故答案为:2.
【点睛】
本题考查函数图象上点的坐标特征以及二次根式运算,注意掌握图象上点的坐标适合解析式.
5、①②##②①
【解析】
【分析】
根据函数图象可知,小明4分钟所走的路程为1600米,分钟休息,分钟骑车米,骑车的总路程为2800米,根据路程、速度、时间的关系进行解答即可.
【详解】
解:①、根据图象可知,在4~6分钟,路程没有发生变化,所以小明中途休息的时间为:6﹣4=2分钟,故正确;
②、根据图象可知,当t=4时,s=1600,所以小明休息前骑车的平均速度为:1600÷4=400(米/分钟),故正确;
③、根据图象可知,小明在上述过程中所走的路程为2800米,故错误;
④、小明休息后的骑车的平均速度为:(2800﹣1600)÷(10﹣6)=300(米/分),小明休息前骑车的平均速度为:1600÷4=400(米/分钟),
400>300,所以小明休息前骑车的平均速度大于休息后骑车的平均速度,故错误;
综上所述,正确的有①②.
故答案为①②.
【点睛】
本题考查了函数图象,解决本题的关键是读懂函数图象,获取信息,进而解决问题.
三、解答题
1、(1)所挂物体质量,弹簧长度;(2)y=4x+18;(3)8kg
【解析】
【分析】
(1)因为表中的数据主要涉及到弹簧的长度和所挂物体的质量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;
(2)利用表格中数据的变化进而得出答案;
(3)由(2)中关系式,可求当弹簧长度为50cm(在弹簧承受范围内)时,所挂重物的质量.
【详解】
解:(1)上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;
故答案为:所挂物体质量,弹簧长度;
(2)由表格可得:当所挂物体重量为1千克时,弹簧长4厘米;当不挂重物时,弹簧长18厘米,
则y与x的关系式为:y=4x+18;
故答案为:y=4x+18;
(3)当弹簧长度为50cm(在弹簧承受范围内)时,
50=4x+18,
解得x=8,
答:所挂重物的质量为8kg.
【点睛】
本题考查了函数的表示方法,本题需仔细分析表中的数据,进而解决问题.明确变量及变量之间的关系是解好本题的关键.
2、图(1)(2)(3)中y是x的函数
【解析】
【分析】
设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可得出结论.
【详解】
解:图(1)对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;
图(2)对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;
图(3)对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;
图(4)对于一部分自变量x的值,y有两个值与之相对应, y不是x的函数;
故图(1)(2)(3)中y是x的函数
【点睛】
本题主要考查了函数概念,关键是掌握注意对函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.
3、(1),;(2)图像见解析;(3)函数图像与x轴没有交点,且函数值都大于0(答案不唯一);(4)
【解析】
【分析】
(1)将x=0,3分别代入解析式即可得y的值,即可求出a、b的值;
(2)描点、连线即可;
(3)观察函数图象即可求得;
(4)观察函数图像,先确定的范围内的交点,再由上下位置比较大小即可.
【详解】
(1)把代入解析式得;
把代入解析式得
故答案为:,;
(2)函数图像如图:
(3)由函数图像可知:函数图像与x轴没有交点,且函数值都大于0(答案不唯一)
(4)由图象可知:在的范围内
的解集为.
【点睛】
本题主要考查函数的图象和性质,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.
4、(1)是;(2)是;(3)是,例子不唯一
【解析】
【分析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可逐一判断.
【详解】
解:(1)满足对于x的每一个取值,y都有唯一确定的值与之对应关系,y是x的函数;
(2)满足对于x的每一个取值,y都有唯一确定的值与之对应关系,y是x的函数;
(3)满足对于x的每一个取值,y都有唯一确定的值与之对应关系,y是x的函数;
例如:、y=等对于x的每一个确定的值,y有唯一的对应值,即y是x的函数.
【点睛】
本题主要考查函数的概念,属于基础题型.
5、(1)反映了拋射距离与高度之间的关系;(2)2.0,2.5,2.65,2.5,2.0,1.2,0;(3)确定;(4)可以
【解析】
【分析】
(1)根据变量的定义,即可求解;
(2)根据图象填表即可;
(3)根据这一范围内对于任一个距离,对应的函数值高度是唯一的,即可得到相应的高度是确定的;
(4)根据函数的定义,即可求解.
【详解】
解:(1)根据题意得:这个图象反映了高度与拋射水平距离之间的关系;
(2)根据图象填表如下:
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
2.0 | 2.5 | 2.65 | 2.5 | 2.0 | 1.2 | 0 |
(3)当距离取之间的一个确定的值时,相应的高度是确定的,
理由如下:因为这一范围内对于任一个距离,对应的函数值高度是唯一的,所以相应的高度是确定的;
(4)∵高度随距离的变化而变化,并且对于任一个距离,对应的函数值高度是唯一的,
∴高度可以看成距离的函数.
【点睛】
本题主要考查了函数与变量,熟练掌握设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量是解题的关键.
初中数学冀教版八年级下册第二十章 函数综合与测试课时训练: 这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课时训练,共21页。试卷主要包含了小斌家等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十章 函数综合与测试课后复习题: 这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后复习题,共27页。试卷主要包含了如图,点A的坐标为,小斌家等内容,欢迎下载使用。
冀教版八年级下册第二十章 函数综合与测试同步训练题: 这是一份冀教版八年级下册第二十章 函数综合与测试同步训练题,共18页。试卷主要包含了函数中,自变量x的取值范围是等内容,欢迎下载使用。