初中数学冀教版八年级下册第二十章 函数综合与测试精练
展开
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试精练,共22页。试卷主要包含了当时,函数的值是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、今年暑假期间,小东外出爬山.他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为(分钟),所走的路程为s(米),s与t 之间的函数关系如图所示.下列说法错误的是( )A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟 70米C.小明在上述过程中所走的路程为3800米D.小明休息前爬山的平均速度小于休息后爬山的平均速度2、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A.①②③ B.①②④ C.③④ D.①③④3、小明家到学校5公里,则小明骑车上学的用时t与平均速度v之间的函数关系式是( )A. B. C. D.4、下列曲线中,表示y是x的函数的是( )A. B.C. D.5、当时,函数的值是( )A. B. C.2 D.16、如图,图中的函数图象描述了甲乙两人越野登山比赛.(x表示甲从起点出发所行的时间,表示甲的路程,表示乙的路程).下列4个说法:①越野登山比赛的全程为1000米;②甲比乙晚出发40分钟;③甲在途中休息了10分钟;④乙追上甲时,乙跑了750米.其中正确的说法有( )个A.1 B.2 C.3 D.47、已知一个等腰三角形的腰长为x,底边长为y,周长是10,则底边y关于腰长x之间的函数关系式及定义域为( )A.y=10﹣2x(5<x<10) B.y=10﹣2x(2.5<x<5)C.y=10﹣2x(0<x<5) D.y=10﹣2x(0<x<10)8、如图,已知在ABC中,AB=AC,点D沿BC自B向C运动,作BE⊥AD于E,CF⊥AD于F,则BE+CF的值y与BD的长x之间的函数图象大致是( )A. B.C. D.9、甲、乙二人约好同时出发,沿同一路线去某博物馆参加科普活动,如图,x表示的是行走时间(单位:分),y表示的是甲到出发地的距离(单位:米),最后两人都到达了目的地.根据图中提供的信息,下面有四个结论:①甲、乙二人第一次相遇后,停留了10分钟;②甲先到达目的地;③甲停留10分钟之后提高了行走速度;④甲行走的平均速度要比乙行走的平均速度快.其中正确的是( )A.①②④ B.①②③ C.①③④ D.②③④10、在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知抛物线y=x2﹣x﹣3与x轴的一个交点为(m,0),则代数式2m2﹣2m+2019的值为_____.2、定义:用_______来表示函数关系的方法叫做图象法.图象法能形象直观地表示函数的变化情况,但只能近似的表达两个变量之间的函数关系.3、如图1,在△ABC中,AB>AC,D是边BC上的动点.设B,D两点之间的距离为x,A,D两点之间的距离为y, 表示 y与x的函数关系的图象如图2所示.线段AC的长为_________________,线段AB的长为____________.4、如图,在 Rt△ABC中,∠ACB=90°,BC=4cm,AC=9cm,点 D在线段 CA上从点C出发向点A方向运动(点 D不与点 A,点C重合),且点D运动的速度为2cm/s,现设运动时间为 x(0<x<)秒时,对应的 △ABD 的面积为ycm²,则当x=2 时,y=_________ ;y与x之间满足的关系式为_________.5、汽车以60km/h的速度匀速行驶,行驶路程为 s km,行驶时间为 t h,如表:t/h12345s/km60120180240300可知:路程 =____________(1)在上面这个过程中,变化的量是_______、_________.不变化的量是_____________.(2)试用含t的式子表示s:s=_______.这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.三、解答题(5小题,每小题10分,共计50分)1、如图1,是一个矩形裁去一个小矩形后余下的边框,动点以每秒的速从点出发,沿移动到点止,相应的的面积与时间的图象如图2所示:(1)求图2中的值;(2)图1的面积为多少?(3)求图2中的值.(4)当的面积等于时,求的周长.2、初二年级小王同学坚持环保理念,每天骑自行车上学,学校离家3000米.某天,小王上学途中因自行车发生故障,修车耽误了一段时间后继续骑行,还是按时赶到了学校,如图描述的是他离家的距离S和离家的时间t之间的函数图像,根据图像解决下列问题:(1)修车时间为______分钟:(2)到达学校时共用时间______分钟;(3)小王从离家时到自行车发生故障时,离家的距离S和离家的时间t之间的函数关系式为______定义域为______;(4)自行车故障排除后他的平均速度是每分钟______米.3、已知动点P以2cm/s的速度沿图1所示的边框从B-C-D-E-F-A的路径运动,记△ABP的面积为S(cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC=________ cm,CD=________ cm,DE=________ cm;(2)求图2中m、n的值.4、在一定限度内(所挂物体重量不过)弹簧挂上物体后会伸长,测得一弹簧长度与所挂物体质量有如下关系:所挂物体质量弹簧长度(1)由表格知,弹簧原长为________,所挂物体每增加弹簧伸长________.(2)请写出弹簧长度与所挂物体质量之间的关系式,并指出自变量取值范围.(3)预测当所挂物体质量为时,弹簧长度是多少?(4)当弹簧长度为时,求所挂物体的质量.5、求出下列函数中自变量的取值范围(1)(2)(3) -参考答案-一、单选题1、D【解析】【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800−2800)米,爬山的总路程为3800米,根据路程、速度、时间之间的关系进行解答即可.【详解】解:A、小明中途休息用了60−40=20分钟,正确,不符合题意;B、小明休息前爬山的速度为2800÷40=70(米/分钟),正确,不符合题意;C、小明在上述过程中所走的路程为3800米,正确,不符合题意;D、小明休息前爬山的速度为2800÷40=70(米/分钟),小明休息后爬山的速度是(3800−2800)÷(100−60)=25(米/分钟),小明休息前爬山的平均速度大于休息后爬山的平均速度,错误,符合题意;故选:D.【点睛】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.2、D【解析】【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;隧道长是:45×30-150=1200(米),故④正确.故选:D.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.3、D【解析】【分析】根据速度,时间与路程的关系得出,变形即可.【详解】解:根据速度,时间与路程的关系得∴.故选D.【点睛】本题考查列函数关系式,掌握速度,时间与路程的关系得出是解题关键.4、C【解析】【分析】根据函数的定义可知,满足对于的每一个取值,都有唯一确定的值与之对应关系,据此即可确定答案.【详解】解:A、对于的每一个取值,可能有两个值与之对应,不符合题意;B、对于的每一个取值,可能有两个值与之对应,不符合题意;C、对于的每一个取值,都有唯一确定的值与之对应,符合题意;D、对于的每一个取值,可能有两个值与之对应,不符合题意;故选:【点睛】本题主要考查了函数概念,关键是掌握在一个变化过程中有两个变量与,对于的每一个确定的值,都有唯一的值与其对应,那么就说是的函数,是自变量.5、D【解析】【分析】把代入计算即可.【详解】解:把代入,得,故选D.【点睛】本题考查的是函数值的求法,函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值.6、C【解析】【分析】根据终点距离起点1000米即可判断①;根据甲、乙图像的起点可以判断②;根据AB段为甲休息的时间即可判断③;设乙需要t分钟追上甲,,求出t即可判断④.【详解】解:由图像可知,从起点到终点的距离为1000米,故①正确;根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故②错误;在AB段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故③正确;∵乙从起点到终点的时间为10分钟,∴乙的速度为1000÷10=100米/分钟,设乙需要t分钟追上甲,,解得t=7.5,∴乙追上甲时,乙跑了7.5×100=750米,故④正确;故选C.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.7、B【解析】【分析】根据等腰三角形的定义即三角形的周长公式列出底边y关于腰长x之间的函数关系式,根据三角形的三边关系以及底边大于0,列出不等式组,进而求得定义域.【详解】一个等腰三角形的腰长为x,底边长为y,周长是10,即即解得即解得底边y关于腰长x之间的函数关系式为故选B【点睛】本题考查了等腰三角形的定义,三角形的三边关系,函数解析式,掌握以上知识是解题的关键.8、D【解析】【分析】根据题意过点A作AD′⊥BC于点D′,由题可知,当点D从点B运动到点C,即x从小变大时,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可得结论.【详解】解:过点A作AD′⊥BC于点D′,如图,由题可知,当点D从点B运动到点C,即x从小变大中,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可知,D选项是正确的;故选:D.【点睛】本题主要考查动点问题的函数图象,题中没有给任何的数据,需要通过变化趋势进行判断.9、A【解析】【分析】由图象可得:10分钟到20分钟之间,路程没有变化,可判断①,由甲35分钟时到达目的地,乙40分钟到达,可判断②,分别求解前后两段时间内甲的速度可判断③,由前后两段时间内甲的速度都比乙快,可判断④,从而可得答案.【详解】解:①由图象可得:甲、乙二人第一次相遇后,停留了20﹣10=10(分钟),故①符合题意;②甲在35分时到达,乙在40分时到达,所以甲先到达的目的地,故②符合题意;③甲前面10分钟的速度为:每分钟米,甲在停留10分钟之后的速度为:每分钟米,所以减慢了行走速度,故③不符合题意;④由图象可得:两段路程甲的速度都比乙快,所以甲行走的平均速度要比乙行走的平均速度快,故④符合题意;所以正确的是①②④.故选:A.【点睛】本题考查的是从函数图象中获取信息,理解题意,弄懂图象上点的坐标含义是解本题的关键.10、D【解析】【分析】根据题意分析出 托运费y与物品重量x之间的函数关系,画出图像即可.【详解】解:由题意可得,当时,,∵物品重量每增加1kg(不足1kg按1kg计)需增加托运费0.5元,∴托运费y与物品重量x之间的函数图像为:故选:D.【点睛】此题考查了函数的图像,解题的关键是根据题意正确分析出托运费y与物品重量x之间的函数关系.二、填空题1、2025【解析】【分析】首先把(m,0)代入y=x2-x-3可得m2-m=3,进而可得2m2﹣2m+2019的值.【详解】解:∵抛物线y=x2﹣x﹣3,与x轴的一个交点为(m,0),∴m2-m-3=0,随意m2-m=3,2m2﹣2m+2019=2(m2﹣m)+2019=6+2019=2025.故答案为2025.【点睛】本题考查了二次函数图象上点的坐标特征,根据点在抛物线上得出m2-m-3=0是解题的关键.2、图象【解析】略3、 【解析】【分析】从图象看,当x=1时,y=,即BD=1时,AD=,当x=7时,y=,即BD=7时,C、D重合,此时y=AD=AC=,则CD=6,即当BD=1时,△ADC为以点A为顶点腰长为的等腰三角形,进而求解.【详解】解:从图象看,当x=1时,y=,即BD=1时,AD=,当x=7时,y=,即BD=7时,C、D重合,此时y=AD=AC=,则CD=6,即当BD=1时,△ADC为以点A为顶点腰长为的等腰三角形,如下图:过点A作AH⊥BC于点H,在Rt△ACH中,,则,在Rt△ABH中,,故答案为:,.【点睛】本题考查的是动点问题的函数图象,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.4、 【解析】【分析】根据,代入数轴求解即可.【详解】解:根据题意得:===,∴当x=2 时,,故答案为:,.【点睛】本题考查了动点问题的函数关系,根据题意得出解析式是关系.5、 速度×时间 时间t 路程s 速度60km/h 60 t s t【解析】略三、解答题1、(1);(2);(3);(4)当点在上且时,的周长为;当点在上且时,的周长为【解析】【分析】(1)动点P在BC上运动时,对应的时间为0到3秒,求出BC=6cm,从而得到当t=3时,△ABP的面积S=24();(2)由图可得:CD=4cm,DE=6cm,所以AF=BC+DE=12cm,根据甲图的面积为AB×AF−CD×DE求出答案;(3)根据题意,求出动点P共运动的总长度,再除以其速度即可;(4)分点P在DE上和点P在AF上两种情况,根据面积先求出AB边上的高,再求出另外两边长即可得到△ABP的周长.【详解】解:(1)动点P在BC上运动时,对应的时间为0到3秒,∴BC=2×3=6cm,∴当t=3时,△ABP的面积S=8×6÷2=24(),∴图2中a的值为24.(2)由图可得:CD=2×2=4cm,DE=2×3=6cm,则AF=BC+DE=12cm,又由AB=8cm,则甲图的面积为AB×AF−CD×DE=8×12−6×4=72(),∴图甲中的图形面积的72().(3)根据题意,动点P共运动了BC+CD+DE+EF+FA=6+4+6+4+12=32cm,其速度是2cm/秒,则b=32÷2=16s,图乙中的b是16.(4)当点P在DE上时,AB边上的高=32×2÷8=8cm,∴AP=BP=cm,∴△ABP的周长=AB+AP+BP=8+=(8+8)cm;当点P在AF上时,AP=32×2÷8=8cm,BP==8cm,∴△ABP的周长=AB+AP+BP=8+8+8=(16+8 )cm.【点睛】本题主要考查了动点问题的函数图象,通过图1和图2得出各线段的长度是解题的关键.2、(1)5分钟;(2)20分钟;(3);;(4)300.【解析】【分析】(1)线段AB表示修车时段,时间为5分钟;(2)根据C点横坐标为20,得出到达学校时共用时间;(3)观察图象,获取有关信息:线段OA表示故障前行使情况:10分钟行使了1500米;(4)根据线段BC表示修车后行使情况:5分钟行使了1500米,即可求出行驶速度.【详解】解:(1)线段AB表示修车时段,时间为5分钟;故答案为:5;(2)利用C点横坐标为20,得出从家到学校用时20分钟;故答案为:20;(3)由图象可知:小王从离家时到自行车发生故障时,10分钟行使了1500米,故速度为150米/分,图象过原点,所以函数关系式为S=150t();故答案为:;;(4)线段BC表示修车后行使情况:5分钟行使了1500米,故速度为1500÷5=300(米/分);故答案为 :300.【点睛】此题考查一次函数及其图象的应用,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势,能够从图象中获取相关信息是关键.3、(1)8,4,6;(2)m=24,n=17.【解析】【分析】(1)因为点P速度为2cm/s,所以根据右侧的时间可以求出线段BC,CD和DE的长度;(2)m代表的是点P在C时对应图形面积,n代表的是点P运动到A时对应的时间,由图象都可以求出.【详解】解:(1)∵点P速度为2cm/s,由右侧图象可知,点P在BC线段运动了4秒,∴BC=42=8(cm),点P在CD线段运动了6-4=2秒,∴CD=22=4(cm),点P在DE线段运动9-6=3秒,∴DE=32=6(cm),故答案为:8,4,6;(3)当点P到C时,△ABP的面积为ABBC=68=24(cm2),∴m=24,∵BC+CD+DE+EF+AF=8+4+6+(6-4)+(8+6)=34(cm),∴n=34×=17.【点睛】本题考查了动点问题的函数图象,数形结合的数学思维,通过图象找出对应图形的线段长度,很好的考查了学生分析问题和看图的能力.4、(1)12,0.5;(2),;(3);(4)【解析】【分析】(1)由表格可得弹簧原长以及所挂物体每增加弹簧伸长的长度;(2)由(1)中的结论可求出弹簧长度与所挂物体质量之间的函数关系式;(3)令,求出y的值即可;(4)令,求出x的值即可.【详解】解:(1)由表格可知,所挂物体质量时,弹簧长度为,∴弹簧原长为,∵,∴所挂物体每增加弹簧伸长;(2)由(1)可知:弹簧长度与所挂物体质量之间的函数关系式为,∵所挂物体质量不过,∴自变量x的取值范围是;(3)将代入,得,∴当所挂物体质量为时,弹簧长度是;(4)将代入,得,解得:,∴当弹簧长度为时,物体质量是.【点睛】本题考查了函数的关系式及函数值,解题的关键是根据图表信息解决问题.5、(1)且;(2)且;(3)【解析】【分析】(1)根据分式有意义的条件和零指数幂底数不为0进行求解即可;(2)根据分式有意义的条件和二次根式有意义的条件进行求解即可;(3)根据二次根式有意义的条件进行求解即可.【详解】解:(1)要使有意义,需,解得且;(2)要使有意义,需,解得且;(3)要使有意义,需,解得.【点睛】本题主要考查了分式有意义的条件,二次根式有意义的条件,零指数幂底数不为0,解题的关键在于能够熟练掌握相关知识进行求解.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试同步练习题,共23页。试卷主要包含了小明家等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课时训练,共21页。试卷主要包含了小斌家等内容,欢迎下载使用。
这是一份2021学年第二十章 函数综合与测试复习练习题,共23页。试卷主要包含了在函数中,自变量的取值范围是,函数的图象如下图所示等内容,欢迎下载使用。