冀教版八年级下册第二十章 函数综合与测试测试题
展开
这是一份冀教版八年级下册第二十章 函数综合与测试测试题,共24页。
冀教版八年级数学下册第二十章函数定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、变量,有如下关系:①;②;③;④.其中是的函数的是( )A.①②③④ B.①②③ C.①② D.①2、小江和小北两兄弟步行从家里去公园,小江先出发一段时间后小北再出发,途中小北追上了小江最终先到达公园,两人所走路程s(米)与小北出发后的时间t(分钟)的函数关系如图所示.下列说法正确的是( )A.表示的是小江步行的情况,表示的是小北步行的情况B.小江的速度是45米/分钟,小北的速度是60米/分钟C.小江比小北先出发16分钟.D.小北出发后8分钟追上小江3、A,B两地相距30km,甲乙两人沿同一条路线从A地到B地.如图,反映的是两人行进路程y(km)与行进时间t(h)之间的关系,①甲始终是匀速运动,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时,④甲在出发5小时后被乙追上.以上说法正确的个数有( )A.1个 B.2个 C.3个 D.4个4、下列图象中,表示y是x的函数的个数有( )A.1个 B.2个 C.3个 D.4个5、甲、乙两人沿同一条路从地出发,去往100千米外的地,甲、乙两人离地的距离(千米)与时间(小时)之间的关系如图所示,以下说法正确的是( )A.甲的速度是 B.乙的速度是C.甲乙同时到达地 D.甲出发两小时后两人第一次相遇6、笔直的海岸线上依次有A,B,C三个港口,甲船从A港口出发,沿海岸线匀速驶向C港口,1小时后乙船从B港口出发,沿海岸线匀速驶向A港口,两船同时到达目的地,甲船的速度是乙船的1.25倍,甲、乙两船与B港口的距离y(km)与甲船行驶时间x(h)之间的函数关系如图所示给出下列说法:①A,B港口相距400km;②B,C港口相距300km;③甲船的速度为100km/h;④乙船出发4h时,两船相距220km,其中正确的个数是( )A.1 B.2 C.3 D.47、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是( )A.两人前行过程中的速度为180米/分 B.的值是15,的值是2700C.爸爸返回时的速度为90米/分 D.运动18分钟或31分钟时,两人相距810米8、三地位于同一条笔直的直线上,B在之间,甲、乙两人分别从两地同时出发赶往C地,甲、乙两人距C地的距离s(单位:m)与甲运动的时间t(单位:s)之间的关系如图所示.根据图象判断下列说法错误的是( )A.两地之间的距离为 B.甲的速度比乙快C.甲、乙两人相遇的时间为 D.时,甲、乙两人之间的距离为9、用m元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式( )A.y=n(+0.6) B.y=n()+0.6C.y=n(+0.6) D.y=n()+0.610、下列所描述的四个变化过程中,变量之间的关系不能看成函数关系的是( )A.小车在下滑过程中下滑时间t和支撑物的高度h之间的关系B.三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系C.骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系D.一个正数x的平方根是y,y随着这个数x的变化而变化,y与x之间的关系第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知函数f(x)=+x,则f()=_____.2、已知函数y=,那么自变量x的取值范围是_________.3、函数的图象不经过横坐标是_____的点.4、如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=___________________,△APE的面积等于6.5、若正方形的边长为x,面积为y,则y与x之间的关系式为_______().三、解答题(5小题,每小题10分,共计50分)1、在直角梯形中,,,,联结,如图(a).点沿梯形的边,按照点移动,设点移动的距离为,.(1)当点从点移动到点时,与的函数关系如图(b)中折线所示.则______,_____,_____.(2)在(1)的情况下,点按照点移动(点与点不重合),是否能为等腰三角形?若能,请求出所有能使为等腰三角形的的值;若不能,请说明理由.2、假设圆锥的高是6cm,当圆锥的底面半径由小到大变化时,圆锥的体积随着底面半径而变化,(圆锥的体积公式:V=πr2h,其中r表示底面半径,h表示圆锥的高)(1)在这个变化过程中,自变量是______________,因变量是_____________.(2)如果圆锥底面半径为r(cm),那么圆锥的体积V(cm3)与r(cm)的关系式为_________.(3)当r由1cm变化到10cm时,V由__________cm3变化到__________cm3.3、如果,如;;……那么________.4、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6立方米时,水费按a元/立方米收费;每户每月用水量超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分按c元/立方米收费,该市某用户今年3、4月份的用水量和水费如下表所示:月份用水量x(m3)收费y(元)357.54927(1)求a、c的值;(2)写出每月用水量x不超过6立方米和超过6立方米时,水费y与用水量x之间的关系式;(3)已知某户5月份的用水量为8立方米,求该用户5月份的水费.5、下图是某物体的抛射曲线图,其中表示物体与抛射点之间的水平距离,表示物体的高度.(1)这个图象反映了哪两个变量之间的关系?(2)根据图象填表:0123456 (3)当距离取之间的一个确定的值时,相应的高度确定吗?(4)高度可以看成距离的函数吗? -参考答案-一、单选题1、B【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可.【详解】解:①满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;②满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;③满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;④,当时,,则y不是x的函数;综上,是函数的有①②③.故选:B.【点睛】本题主要考查了函数的定义.在一个变化过程中,有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数.2、C【解析】【分析】观察图象,可得:表示的是小北步行的情况,表示的是小江步行的情况,可得A错误;小江32分钟步行(1440-480)米,小北24分钟步行1440米,再根据该时间段内的速度等于路程除以时间,可得B错误;因为小江比小北先走480米,所以用480除以小江的速度30,可得C正确;设小北出发后 分钟追上小江,则 ,解出可得D错误,即可求解.【详解】解:根据题意得:A、因为小江先出发一段时间后小北再出发,所以表示的是小北步行的情况,表示的是小江步行的情况,故本选项不符合题意;B、小江的速度是米/分钟,小北的速度是米/分钟,故本选项不符合题意;C、观察图象,得:小江比小北先出发 分钟,故本选项符合题意;D、设小北出发后 分钟追上小江,则 ,解得: ,即小北出发后16分钟追上小江,故本选项不符合题意;故选:C【点睛】本题主要考查了函数图象的应用,准确从函数图象获取信息是解题的关键.3、B【解析】【分析】根据甲、乙函数图像一个是直线一个不是直线即可判断①;根据甲从t=0开始出发,乙从t=0.5出发即可判断②③;根据甲、乙函数图像的交点的横坐标小于5可以判断④.【详解】解:由函数图像可知,甲的函数图像是一条直线,乙的函数图像不是直线,故甲是匀速运动,乙不是匀速运动,故①正确;乙在第0.5小时出发,在第5小时到达,则乙的行进时间为5-0.5=4.5小时,故②错误;根据函数图像可知乙比甲迟出发0.5小时,故③正确,根据函数图像可知,当乙追上甲时,两人的行进路程相同,即在函数图像中的甲、乙函数图像的交点处乙追上甲,则乙追上甲时,甲出发的时间小于5小时,故④错误;故选B.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.4、B【解析】【分析】根据函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量,据此判断即可.【详解】解:属于函数的有故y是x的函数的个数有2个,故选:B.【点睛】本题考查了函数的定义,熟记定义是本题的关键.5、A【解析】【分析】根据函数图象中的数据,可以计算出各个选项中的说法是否正确,然后即可判断哪个选项中的说法是否正确.【详解】解:由图象可得,甲的速度是,故选项符合题意;乙的速度为:,故选项不符合题意;甲先到达地,故选项不符合题意;甲出发小时后两人第一次相遇,故选项不符合题意;故选:A.【点睛】本题考查一次函数的应用,解题的关键是利用数形结合的思想解答.6、B【解析】【分析】根据图象可知A、B港口相距400km,从而可以判断①;根据甲船从A港口出发,沿海岸线匀速驶向C港,1小时后乙船从B港口出发,沿海岸线匀速驶向A港,两船同时到达目的地.甲船的速度是乙船的1.25倍,可以计算出B、C港口间的距离,从而可以判断②;根据图象可知甲船4个小时行驶了400km,可以求得甲船的速度,从而可以判断③;根据题意和图象可以计算出乙出发4h时两船相距的距离,从而可以判断④.【详解】解:由题意和图象可知, A、B港口相距400km,故①正确;∵甲船的速度是乙船的1.25倍, ∴乙船的速度为:100÷1.25=80(km/h), ∵乙船的速度为80km/h, ∴400÷80=(400+)÷100-1, 解得:=200km, 故②错误; ∵甲船4个小时行驶了400km, ∴甲船的速度为:400÷4=100(km/h), 故③正确; 乙出发4h时两船相距的距离是:4×80+(4+1-4)×100=420(km), 故④错误.故选B【点睛】本题考查从函数图象中获取信息,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.7、D【解析】【分析】两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.【详解】解:∵3600÷20=180米/分,∴两人同行过程中的速度为180米/分,故A选项不符合题意;∵东东在爸爸返回5分钟后返回即第20分钟返回∴m=20-5=15,∴n=180×15=2700,故B选项不符合题意;∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,∴运动18分钟时两人相距3240-2430=810米;∵返程过程中东东45-20=25分钟走了3600米,∴东东返程速度=3600÷25=144米/分,∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,∴运动31分钟两人相距756米,故D选项符合题意;故选D.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.8、C【解析】【分析】根据图像上的信息逐个分析判断即可.【详解】根据图像可得两地之间的距离为m,∴A选项正确,不符合题意;根据图像可得甲的速度为,乙的速度为,∴,∴甲的速度比乙快,∴B选项正确,不符合题意;设相遇的时间为t,∴,解得:,∴甲、乙两人相遇的时间为,∴C选项错误,符合题意;时,乙运动的路程为m,甲运动的路程为m,∴m,∴时,甲、乙两人之间的距离为.∴D选项正确,不符合题意.故选:C.【点睛】此题考查了实际问题的函数的图像,解题的关键是正确分析出图像中必要的信息.9、A【解析】【分析】由题意可得每本书的价格为元,再根据每本书需另加邮寄费6角即可得出答案;【详解】解:因为用m元钱在网上书店恰好可购买100本书,所以每本书的价格为元,又因为每本书需另加邮寄费6角,所以购买n本书共需费用y=n(+0.6)元;故选:A.【点睛】本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.10、D【解析】【分析】根据函数的定义:在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一的值与之对应,则称x是自变量,y是x的函数,由此进行逐一判断即可【详解】解:A、小车在下滑过程中下滑时间t和支撑物的高度h之间的关系,对于每一个确定的高度h,下滑时间t都有唯一值与之对应,满足函数的关系,故不符合题意;B、三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系,由面积s=边长×高,可知,对于每一个确定的边长,面积s都有唯一值与之对应,满足函数的关系,故不符合题意;C、骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系,对于每一个确定的时间,温度T都有唯一值与之对应,满足函数的关系,故不符合题意;D、∵一个正数x的平方根是y,∴,对于每一个确定的x,y都有两个值与之对应,不满足函数的关系,故符合题意;故选D.【点睛】本题主要考查了函数的定义,解题的关键在于能够熟练掌握函数的定义.二、填空题1、【解析】【分析】根据题意直接把x=代入解析式进行计算即可求得答案.【详解】解:∵函数f(x)=+x,∴f()=+=2,故答案为:2.【点睛】本题考查函数图象上点的坐标特征以及二次根式运算,注意掌握图象上点的坐标适合解析式.2、【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,,解得,,故答案为:.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数的非负数是解题的关键.3、-3【解析】【分析】根据分式有意义的条件:分母不为0解答即可.【详解】解:函数要有意义,需要,所以不经过横坐标是的点.故答案为:-3.【点睛】本题主要考查了函数的自变量取值范围,掌握代数式有意义时字母的取值范围是解题关键.4、1.5或5或9【解析】【分析】分为两种情况讨论:当点P在AC上时:当点P在BC上时,根据三角形的面积公式建立方程求出其解即可.【详解】如图1,当点P在AC上.∵中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,∴CE=4,AP=2t.∵的面积等于6,∴=AP•CE=AP×4=6.∵AP=3,∴t=1.5.如图2,当点P在BC上.则t>3∵E是DC的中点,∴BE=CE=4.∴=EP•AC=EP×6=6, ∴PE=2,∴t=5或t=9.总上所述,当t=1.5或5或9时,的面积会等于6.故答案为:1.5或5或9.【点睛】本题考查了直角三角形的性质的运用,三角形的面积公式的运用,解答时灵活运用三角形的面积公式求解是关键.5、【解析】【分析】根据正方形的面积公式列出函数关系式即可;【详解】y=x2【点睛】本题考查列函数关系式,掌握正方形的面积公式是得出函数关系式的前提.三、解答题1、(1)5,3,1;(2)2或或或【解析】【分析】(1)由图(b)得:AB=5,作DE⊥AB于E,则DE=BC=3,CD=BE,由勾股定理求出AE=4,得出CD=BE=AB−AE=1;(2)分情况讨论:①点P在AB边上时;②点P在BC上时;③点P在AD上时;由等腰三角形的性质和勾股定理即可得出答案.【详解】解:(1)由图(b)得:AB=5,AB+BC=8,∴BC=3,作DE⊥AB于E,如图1所示:则DE=BC=3,CD=BE,∵AD=AB=5,∴AE==4,∴CD=BE=AB−AE=1,故答案是:5,3,1;(2)解:可能;理由如下:分情况讨论:①点P在AB边上时,当DP=DB时,BP=2BE=2,当BP=BD时,BP=BD=;②点P在BC上时,存在PD=PB,设PD=BP=m,则CP=3-m,∴,解得:m=,∴BP=;③点P在AD上时,当BP=BD时, 则BP=BD=,当时,则AP=5-,过点P作PM⊥AB,则sinA=,cosA=,∴PM=(5-)=3-,AM=(5-)=4-,∴BM=5-(4-)=1+,∴PB==,综上所述:△BDP可能为等腰三角形,能使△BDP为等腰三角形的的值为:2或或或.【点睛】本题是四边形综合题目,考查了梯形的性质、平行线的性质、等腰三角形的性质与判定、直角三角形的性质、勾股定理等知识;本题综合性强,有一定难度.2、(1)圆锥的底面半径,圆锥的体积;(2)V=2πr2;(3)2π;200π.【解析】【分析】(1)圆锥的体积随着底面半径的变化而变化,于是圆锥的底面半径为自变量,圆锥的体积为因变量;(2)由圆锥的体积公式:V=π•r2•h,h=6,可得函数关系式;(3)根据函数关系式,求出当r=1cm和r=10cm时的体积V即可.【详解】解:(1)由于圆锥的体积随之底面半径的变化而变化,因此圆锥的底面半径为自变量,圆锥的体积为因变量,故答案为:圆锥的底面半径,圆锥的体积;(2)当h=6时,由圆锥的体积公式:V=π•r2•h可得,由圆锥的体积公式:V=π•r2•h可得,V=2πr2,故答案为:V=2πr2;(3)当r=1cm时,V=2π(cm3),当r=10cm时,V=2π×102=200π(cm3),故答案为:2π,200π.【点睛】本题考查变量之间的关系,函数关系式,理解函数的意义,掌握圆锥的体积的计算方法是正确解答的前提.3、####【解析】【分析】由,计算得到,观察得到,由此将原式化简计算即可.【详解】解:∵∴∴∴==故答案为:【点睛】本题考查函数的概念,牢记知识点并灵活应用是解题关键.4、(1)a=1.5,c=6;(2)时,,时,;(3)该用户5月份的水费为21元.【解析】【分析】(1)根据题意列出方程组,解出即可求解;(2)分时和当时,列出函数关系式,即可求解;(3)根据 ,将 代入,即可求解.【详解】解:(1)根据题意得: ,解得: ;(2)当时,,当时,;(3)∵ ,∴该用户5月份的水费(元).【点睛】本题主要考查了二元一次方程组的应用,列函数关系式,求函数值,明确题意,准确得到等量关系是解题的关键.5、(1)反映了拋射距离与高度之间的关系;(2)2.0,2.5,2.65,2.5,2.0,1.2,0;(3)确定;(4)可以【解析】【分析】(1)根据变量的定义,即可求解;(2)根据图象填表即可;(3)根据这一范围内对于任一个距离,对应的函数值高度是唯一的,即可得到相应的高度是确定的;(4)根据函数的定义,即可求解.【详解】解:(1)根据题意得:这个图象反映了高度与拋射水平距离之间的关系;(2)根据图象填表如下:01234562.02.52.652.52.01.20 (3)当距离取之间的一个确定的值时,相应的高度是确定的,理由如下:因为这一范围内对于任一个距离,对应的函数值高度是唯一的,所以相应的高度是确定的;(4)∵高度随距离的变化而变化,并且对于任一个距离,对应的函数值高度是唯一的,∴高度可以看成距离的函数.【点睛】本题主要考查了函数与变量,熟练掌握设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课时训练,共21页。试卷主要包含了小斌家等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十章 函数综合与测试课后练习题,共25页。
这是一份八年级下册第二十章 函数综合与测试一课一练,共22页。试卷主要包含了函数中,自变量x的取值范围是等内容,欢迎下载使用。