2021学年第二十章 函数综合与测试同步练习题
展开
这是一份2021学年第二十章 函数综合与测试同步练习题,共24页。试卷主要包含了函数中,自变量x的取值范围是,当时,函数的值是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、中考体育篮球运球考试中,测试场地长20米,宽7米,起点线后5米处开始设置10根标志杆,每排设置两根,各排标志杆底座中心点之间相距1米,距两侧边线3米,假设某学生按照图1路线进行单向运球,运球行进过程中,学生与测试老师的距离y与运球时间x之间的图象如图2所示,那么测试老师可能站在图1中的位置为( )A.点A B.点B C.点C D.点D2、甲、乙两车分别从相距280km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,下列说法:①乙车的速度是40千米/时;②甲车从C返回A的速度为70千米/时;③t=3;④当两车相距35千米时,乙车行驶的时间是2小时或6小时,其中正确的有( )A.1个 B.2个 C.3个 D.4个3、某天,小南和小开两兄弟一起从家出发到某景区旅游,开始大家一起乘坐时速为50千米的旅游大巴,出发2小时后,小南有急事需回家,于是立即下车换乘出租车,一个小时后返回家中,办事用了30分钟后自己驾车沿同一路线以返回时的速度赶往景区,结果小南比小开早30分钟到达景区(三车的速度近似匀速,上下车的时间忽略不计,两地之间为直线路程),两人离家的距离y(千米)与出发时间x(小时)的关系如图所示,则以下说法错误的是( )A.出租车的速度为100千米/小时 B.小南追上小开时距离家300千米C.小南到达景区时共用时7.5小时 D.家距离景区共400千米4、函数中,自变量x的取值范围是( )A. B. C. D.5、油箱中存油60升,油从油箱中均匀流出,流速为0.3升/分钟,则油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是( )A.Q=0.3t B.t=60-0.3Q C.t=0.3Q D.Q=60-0.3t6、如图所示,有一个容器水平放置,往此容器内注水,注满为止.若用h(单位:cm)表示容器底面到水面的高度,用V(单位:)表示注入容器内的水量,则表示V与h的函数关系的图象大致是( )A. B.C. D.7、当时,函数的值是( )A. B. C.2 D.18、初三学生小博匀速骑车从家前往体有馆打羽毛球.已知小博家离体育馆路程为5000米,小博出发5分钟后,爸爸发现小博的电话手表落在家里,无法联系,于是爸爸匀速骑车去追赶小博,当爸爸追赶上小博把手表交给小博后,爸爸立即返回家,小博以原速继续向体有馆前行(假定爸爸给手表和掉头的时间忽略不计),在整个骑行过程中,小博和爸爸均保持各自的速度匀速骑行,小博、爸爸两人之向的距离y(米)与小博出发的时间x(分钟)之间的关系如图所示,对于以下说法错误的是( ).A.小博的迹度为180米/分B.爸爸的速度为270米/分C.点C的坐标是D.当爸爸出发的时间为分钟或分钟时,爸爸与小博相距800米9、甲、乙二人约好同时出发,沿同一路线去某博物馆参加科普活动,如图,x表示的是行走时间(单位:分),y表示的是甲到出发地的距离(单位:米),最后两人都到达了目的地.根据图中提供的信息,下面有四个结论:①甲、乙二人第一次相遇后,停留了10分钟;②甲先到达目的地;③甲停留10分钟之后提高了行走速度;④甲行走的平均速度要比乙行走的平均速度快.其中正确的是( )A.①②④ B.①②③ C.①③④ D.②③④10、如图,一个矩形的长比宽多3cm,矩形的面积是Scm2.设矩形的宽为xcm,当x在一定范围内变化时,S随x的变化而变化,则S与x满足的函数关系是( )A.S=4x+6 B.S=4x-6 C.S=x2+3x D.S=x2-3x第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、等腰三角形中,底角的度数用x表示,顶角的度数用y表示,写出y关于x的函数解析式 ___,函数的定义域 ___.2、某生物研究所的水池有两个进水管和一个出水管,进水管的水流速为2立方米分,出水管的水流速为1立方米/分,如果水池中原有10立方米的水,最大容量是40立方米,同时打开三个水管到水池放满后再将它们同时关闭,这一过程中水池中的水量V(立方米)与打开水管后经过的时间t(分钟)之间的函数关系式是___________,其中自变量t的取值范围是____________.3、小明使用图形计算器探究函数的图象,他输入了一组,的值,得到了如图的函数图象,由学习函数的经验,可以推断出小明输入的__0,__0.(填“”,“”或“” 4、若球体体积为,半径为,则.其中变量是_______、_______,常量是________.5、函数中,自变量x的取值范围是________.三、解答题(5小题,每小题10分,共计50分)1、下列问题中哪些量是自变量?哪些量是自变量的函数?试写出函数的解析式.(1)改变正方形的边长x,正方形的面积S随之改变.(2)每分向一水池注水,注水量y(单位:)随注水时间x(单位:)的变化而变化.(3)秀水村的耕地面积是,这个村人均占有耕地面积y(单位;)随这个村人数n的变化而变化.(4)水池中有水,此后每小时漏水,水池中的水量V(单位:L)随时间t(单位:h)的变化而变化.2、滑车以1.5米/分钟的速度匀速地从轨道的一端滑向另一端,已知轨道的长为6米,滑车滑行分钟时离终点的路程为米.(1)求关于的函数关系式,并写出自变量的取值范围;(2)滑行多长时间时,滑车离终点1米?3、植物呼吸作用受温度影响很大,观察如图,回答问题:(1)此图反映的自变量和因变量分别是什么?(2)温度在什么范围内时豌豆苗的呼吸强度逐渐变强?在什么范围内逐渐减弱?(3)要使豌豆呼吸作用最强,应控制在什么温度左右?4、小明根据学习函数的经验,对函数y=﹣|x|+3的图象与性质进行了探究.下面是小明的探究过程,请你解决相关问题.(1)如表y与x的几组对应值:x…-4-3-2-101234…y…-1012321a-1…①a= ;②若A(b,﹣7)为该函数图象上的点,则b= ;(2)如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:①该函数有 (填“最大值”或“最小值”),并写出这个值为 ;②求出函数图象与坐标轴在第二象限内所围成的图形的面积.5、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程,以下是我们研究函数的性质及其应用的部分过程,请按要求完成下列各小题.x…﹣4﹣3﹣2﹣1012345…y…6a0﹣1.5﹣2﹣1.5020b…(1)表中a= ;b= ;(2)根据表中的数据画出该函数的大致图象,并根据函数图象写出该函数的一条性质.(3)已知直线的图象如图所示,结合你所画的函数图象,当y1>y2时直接写出x的取值范围.(保留1位小数,误差不超过0.2) -参考答案-一、单选题1、B【解析】【分析】由题意根据图2可得学生与测试老师的距离的变化情况,进而即可作出判断.【详解】解:根据图2得:学生与测试老师的距离先快速减小,然后短时间缓慢减小,然后再快速减小,又短时间缓慢增大,然后再快速减到最小,又开始快速增大,再减小,而且开始的时候与测试老师的距离大于快结束的时候,由此可得测试老师可能站在图1中的位置为点B.故选:B.【点睛】本题考查动点问题的函数图象,利用观察学生与测试老师之间距离的变化关系得出函数的增减性是解题的关键.2、B【解析】【分析】由乙车比甲车先出发1小时,与出发地的距离为千米,可判断①,由 千米/时,可判断②,由小时,可得可判断③,利用检验的方法计算当乙车行驶的时间是2小时或6小时时,两车相距的路程可判断④,从而可得答案.【详解】解:由函数图象可得:乙车比甲车先出发1小时,与出发地的距离为千米,所以乙车速度为:35千米/时,故①不符合题意;乙车行驶280千米需要的时间为:小时,所以甲车返回的速度为:千米/时,故②符合题意;由小时,所以 故③符合题意,当乙车行驶2小时时,行驶的路程为:千米,此时甲车行驶1小时,千米,所以两车相距:千米,当乙车行驶6小时时,行驶的路程为千米,距离A地70千米,此时甲车行驶了4个小时,行驶的路程为千米,此时在返回A地的路上,距离A地千米,所以两车相距千米,故④不符合题意;综上:故选B【点睛】本题考查的是从函数图象中获取信息,理解点的坐标含义,特别是利用检验的方法判断④,可以化繁为简,都是解本题的关键.3、B【解析】【分析】先根据旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度可判断A正确;设小南t小时追上小开,利用两者距离相等列方程 50(2+1+0.5+t)=100t,解得t=3.5,可判断B不正确;利用到旅游区两者距离相等列方程50(2+1+0.5+t+0.5)=100t,解得t=4,可判断C正确;利用自驾车行驶速度×时间=100×4=400千米,可求出家距离景区共400千米,可判断D正确.【详解】解:旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度为100÷1=100千米/时,故选项A正确;设小南t小时追上小开,50(2+1+0.5+t)=100t,解得t=3.5,∴100×3.5=350千米,故选项B不正确;50(2+1+0.5+t+0.5)=100t,解得t=4,∴小南到达景区时共用2+1+0.5+4=7.5小时,故选项C正确;∵100×4=400千米,∴家距离景区共400千米,故选项D正确.故选B.【点睛】本题考查函数图像信息获取与处理,掌握函数图像信息获取与处理方法是解题关键.4、B【解析】【分析】根据分母不为零,函数有意义,可得答案.【详解】解:函数有意义,得,解得,故选:B.【点睛】本题考查了函数自变量的取值范围,解题的关键是掌握分母不为零.5、D【解析】【分析】根据油箱中剩余油量=总存油量-流出的油量,列出函数关系式即可.【详解】解:根据题意:油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是:,故选:D.【点睛】本题考查了列函数解析式,关键是正确理解题意,找出题目中的等量关系.6、B【解析】【分析】根据容器的形状可知当液面高度越高时,体积的变化越小,即随着的增大,增大的速度变缓,结合选项即可求解【详解】解:容器的形状可知,底部最大,刚开始当增大时,体积增大较快,但随着的增大,增大的速度变缓,表现出的函数图象即为:函数图象先陡,后缓,结合选项只有B选项符合题意;故选B【点睛】本题考查了函数图象的判断,根据容器的形状以及题意判断函数图象先陡,后缓是解题的关键.7、D【解析】【分析】把代入计算即可.【详解】解:把代入,得,故选D.【点睛】本题考查的是函数值的求法,函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值.8、C【解析】【分析】根据小博出发5分钟后行驶900米,得出小博的迹度为=180米/分,可判断A;爸爸匀速骑车去追赶小博,15分钟时追上小博,设爸爸匀速骑车速度为x米/分,根据两者行驶路程相等列方程15×180=10x,得出x=270米/分,可判断B;点C表示爸爸返回家中两者间的距离,爸爸追上小博用10分钟,(假定爸爸给手表和掉头的时间忽略不计),返回时仍然用10分钟到家,此时小博行驶15+10=25分钟,行驶距离为25×180=4500米,可判断C;设爸爸出发时间为t分钟时,两者之间距离为800米,根据追及与相背而行问题列方程(5+t)180-270t=800或(180+270)×(t-10)=800,解方程可判断D.【详解】解:∵小博出发5分钟后行驶900米,∴小博的迹度为=180米/分,故选项A正确; 爸爸匀速骑车去追赶小博,15分钟时追上小博,设爸爸匀速骑车速度为x米/分,15×180=10x,解得:x=270米/分,∴故选项B正确;点C表示爸爸返回家中两者间的距离,爸爸追上小博用10分钟,(假定爸爸给手表和掉头的时间忽略不计),返回时仍然用10分钟到家,此时小博行驶15+10=25分钟,行驶距离为25×180=4500米,∴点C(25,4500),故选项C不正确,设爸爸出发时间为t分钟时,两者之间距离为800米,(5+t)180-270t=800或(180+270)×(t-10)=800,解得:分钟或分钟,当爸爸出发的时间为分钟或分钟时,爸爸与小博相距800米,故选项D正确.故选C.【点睛】本题考查从函数图像获取信息和处理,掌握从函数图像获取信息和处理,关键掌握图像中的横纵轴于折叠表示的意义.9、A【解析】【分析】由图象可得:10分钟到20分钟之间,路程没有变化,可判断①,由甲35分钟时到达目的地,乙40分钟到达,可判断②,分别求解前后两段时间内甲的速度可判断③,由前后两段时间内甲的速度都比乙快,可判断④,从而可得答案.【详解】解:①由图象可得:甲、乙二人第一次相遇后,停留了20﹣10=10(分钟),故①符合题意;②甲在35分时到达,乙在40分时到达,所以甲先到达的目的地,故②符合题意;③甲前面10分钟的速度为:每分钟米,甲在停留10分钟之后的速度为:每分钟米,所以减慢了行走速度,故③不符合题意;④由图象可得:两段路程甲的速度都比乙快,所以甲行走的平均速度要比乙行走的平均速度快,故④符合题意;所以正确的是①②④.故选:A.【点睛】本题考查的是从函数图象中获取信息,理解题意,弄懂图象上点的坐标含义是解本题的关键.10、C【解析】【分析】先用x表示出矩形的长,然后根据矩形的面积公式即可解答.【详解】解:设矩形的宽为xcm,则长为(x+3)cm由题意得:S=x(x+3)=x2+3x.故选C.【点睛】本题主要考查了列函数解析式,用x表示出矩形的长以及掌握矩形的面积公式成为解答本题的关键.二、填空题1、 【解析】【分析】根据等腰三角形的性质可知两底角相等,根据三角形内角和定理即可列出函数解析式,根据角度底角和顶角都大于0,列出不等式组求得定义域.【详解】等腰三角形中,底角的度数用x表示,顶角的度数用y表示,即解得故答案为:,.【点睛】本题考查了列函数解析式,一元一次不等式组的应用,等腰三角形的性质,三角形内角和定理,根据三角形内角和定理列出解析式是解题的关键.2、 【解析】【分析】根据题意,先求求得自变量的取值范围,再结合题意列出函数表达式即可.【详解】解:依题意,同时打开三个水管到水池放满后再将它们同时关闭,放满所需要的时间为,,依题意,,即,故答案为:,.【点睛】本题考查了列函数关系式,理解题意列出函数关系式是解题的关键.3、 【解析】【分析】由图象可知,当时,,可知;根据函数解析式自变量的取值范围可以知道,结合图象可以知道函数的取不到的值大概是在1的位置,所以大概预测可以得约为1,也即.【详解】解:由图象可知,当时,,;,结合图象可以知道函数的取不到的值大概是在1的位置,.故答案为:,.【点睛】本题考查函数的图象,解题的关键是能够通过已学的反比例函数图象确定的取值.4、 【解析】【分析】根据函数常量与变量的知识点作答.【详解】∵函数关系式为,∴是自变量,是因变量,是常量.故答案为:,,.【点睛】本题考查了常量与变量的知识,解题关键是熟记变量是指在程序的运行过程中随时可以发生变化的量.5、x≥0【解析】【分析】根据二次根式有意义的条件:被开方数为非负数列不等式即可得答案.【详解】∵有意义,∴x≥0.故答案为:x≥0【点睛】本题考查了函数自变量的取值范围,主要涉及二次根式有意义的条件,解题关键是熟记二次根式有意义的条件为:被开方数必须大于或等于0.三、解答题1、(1)自变量x,函数S,;(2)自变量x,函数y,;(3)自变量n,函数y,;(4)自变量t,函数V,【解析】【分析】(1)正方形的边长x为自变量,面积S随之改变,则面积S为边长x的函数;(2)每分向一水池注水,注水量y(单位:)随注水时间x(单位:)的变化而变化,则注水量y(单位:)是注水时间x(单位:)的函数;(3)这个村人数为n,人均占有耕地面积y(单位;)随这个村人数n的变化而变化,则人均占有耕地面积y(单位;)是村人数n的函数;(4)时间为t(单位:h),水池中的水量V(单位:L)随时间t(单位:h)的变化而变化,则水池中的水量V(单位:L)是时间t(单位:h)的函数.【详解】解:(1)自变量x,函数S,;(2)自变量x,函数y,;(3)自变量n,函数y,;(4)自变量t,函数V,.【点睛】本题考查变量与函数,理解函数的定义,准确确定自变量与函数是解题关键.2、(1);(2)【解析】【分析】(1)先求得的范围,根据题意,列出关于的函数关系式,(2)根据(1)的关系式,将代入求解即可.【详解】解:(1)由题意,得;关于的函数关系式为(2)当时,,解得,答:滑行分钟时,滑车离终点1米.【点睛】本题考查了变量与关系式,理解题意,列出关系式是解题的关键.3、(1)此图反映的自变量和因变量分别是温度和呼吸作用强度;(2)温度在0℃到35℃范围内时豌豆苗的呼吸强度逐渐变强;在35℃到50℃范围内逐渐减弱;(3)由图象知,要使豌豆呼吸作用最强,应控制在30℃到40℃左右(或者35℃左右)【解析】【分析】(1)根据函数图象即可得到结论;(2)根据图象中提供的信息即可得到结论;(3)根据图象中提供的信息即可得到结论.【详解】解:(1)此图反映的自变量是温度,因变量是呼吸作用强度;(2)由图象知,温度在0℃到35℃范围内时豌豆苗的呼吸强度逐渐变强;在35℃到50℃范围内逐渐减弱;(3)由图象知,要使豌豆呼吸作用最强,应控制在30℃到40℃左右(或者35℃左右).【点睛】本题考查了常量和变量,函数图象,正确的识别图象是解题的关键.4、 (1)①0;②±10;(2)见解析;①最大值,3;②【解析】【分析】(1)①根据表中对应值和对称性即可求解;②将点A坐标代入函数解析式中求解即可;(2)根据表中对应值,利用描点法画出函数图象即可.①根据图象即解答即可;②根据图象在第二象限的部分,利用三角形的面积公式求解即可.(1)解:①由表可知,该函数图象关于y轴对称,∵当x=-3时,y=0,∴当x=3时,a=0,故答案为:0;②将A(b,-7)代入y=﹣|x|+3中,得:-7 =﹣|b|+3,即|b|=10,解得:b=±10,故答案为:±10;(2)解:函数y=﹣|x|+3的图象如图所示:①由图象可知,该函数有最大值,最大值是3,故答案为:最大值,3;②由图象知,函数图象与坐标轴在第二象限内所围成的图形的面积为.【点睛】本题考查求自变量或函数值、画函数图象、从图象中获取信息、解绝对值方程、三角形的面积公式,理解题意,准确从表中和图象中获取有效信息是解答的关键.5、 (1)2.5;﹣2(2)见解析(3)x<﹣2或1.5<x<5【解析】【分析】(1)根据解析式计算即可;(2)利用描点法画出函数图象,观察图象可得函数的一条性质;(3)根据图象即可求解.(1)解:当x=﹣3时,y1=×(﹣3)2﹣2=2.5,∴a=2.5,当x=5时,y1=2﹣2×|5﹣3|=﹣2,∴b=﹣2,故答案为:2.5,﹣2;(2)解:画出函数图象如图所示:由图象得:x<0时,y随x的增大而减小;(3)画出直线的图象如图所示,由图象可知,当y1>y2时,x的取值范围为:x<﹣2或1.5<x<5.【点睛】本题考查函数图象和性质,能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试达标测试,共21页。试卷主要包含了如图所示的图象,在下列图象中,是的函数的是,函数的自变量x的取值范围是等内容,欢迎下载使用。
这是一份冀教版第二十章 函数综合与测试当堂检测题,共22页。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试精练,共22页。试卷主要包含了当时,函数的值是等内容,欢迎下载使用。