搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷冀教版九年级数学下册第二十九章直线与圆的位置关系必考点解析试卷(精选含详解)

    精品试卷冀教版九年级数学下册第二十九章直线与圆的位置关系必考点解析试卷(精选含详解)第1页
    精品试卷冀教版九年级数学下册第二十九章直线与圆的位置关系必考点解析试卷(精选含详解)第2页
    精品试卷冀教版九年级数学下册第二十九章直线与圆的位置关系必考点解析试卷(精选含详解)第3页
    还剩32页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第29章 直线与圆的位置关系综合与测试精品随堂练习题

    展开

    这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试精品随堂练习题,共35页。试卷主要包含了如图,将的圆周分成五等分,在中,,,给出条件,将一把直尺,在平面直角坐标系中,以点等内容,欢迎下载使用。
    九年级数学下册第二十九章直线与圆的位置关系必考点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )

    A.相交 B.相切
    C.相离 D.不确定
    2、已知⊙O的半径为3cm,在平面内有一点A,且OA=6cm,则点A与⊙O的位置关系是( )
    A.点A在⊙O内 ; B.点A在⊙O上;
    C.点A在⊙O外; D.不能确定.
    3、如图,正五边形ABCDE内接于⊙O,则∠CBD的度数是(  )

    A.30° B.36° C.60° D.72°
    4、如图,将的圆周分成五等分(分点为A、B、C、D、E),依次隔一个分点相连,即成一个正五角星形.小张在制图过程中,惊讶于图形的奇妙,于是对图形展开了研究,得到:点M是线段AD、BE的黄金分割点,也是线段NE、AH的黄金分割点.在以下结论中,不正确的是( )

    A. B.
    C. D.
    5、在中,,,给出条件:①;②;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC的长唯一.可以选取的是( )
    A.① B.② C.③ D.①或③
    6、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是(  )

    A. B.
    C.或 D.(﹣2,0)或(﹣5,0)
    7、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )

    A.6 B. C.3 D.
    8、在平面直角坐标系中,以点(2,3)为圆心,3为半径的圆,一定( )
    A.与x轴相切,与y轴相切 B.与x轴相切,与y轴相交
    C.与x轴相交,与y轴相切 D.与x轴相交,与y轴相交
    9、的半径为5 , 若直线与该圆相交, 则圆心到直线的距离可能是 ( )
    A.3 B.5 C.6 D.10
    10、如图,AB是⊙O的直径,BD与⊙O相切于点B,点C是⊙O上一点,连接AC并延长,交BD于点D,连接OC,BC,若∠BOC=50°,则∠D的度数为(  )

    A.50° B.55° C.65° D.75°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在△ABC中,∠ACB=90°,CD=2,以CD为直径的⊙与AB相切于点E.若弧DE的长为为π,则阴影部分的面积为 _____.(保留π)

    2、如图,半圆O的直径DE=12cm,在中,,,.半圆O以2cm/s的速度从左向右运动,当圆心O运动到点B时停止,点D、E始终在直线BC上.设运动时间为(s),运动开始时,半圆O在的左侧,.当______时,的一边所在直线与半圆O所在的圆相切.

    3、如图,半径为2的与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD的长为______.

    4、如图,为的直径,、为上的点,连接、、、,为延长线上一点,连接,且,.若的半径为,则点到的距离为________.

    5、如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为_________.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,是的直径,是圆上两点,且有,连结,作的延长线于点.

    (1)求证:是的切线;
    (2)若,求阴影部分的面积.(结果保留)
    2、数学课上老师提出问题:“在矩形中,,,是的中点,是边上一点,以为圆心,为半径作,当等于多少时,与矩形的边相切?”.
    小明的思路是:解题应分类讨论,显然不可能与边及所在直线相切,只需讨论与边及相切两种情形.请你根据小明所画的图形解决下列问题:

    (1)如图1,当与相切于点时,求的长;
    (2)如图2,当与相切时,
    ①求的长;
    ②若点从点出发沿射线移动,连接,是的中点,则在点的移动过程中,直接写出点在内的路径长为______.
    3、如图,PA,PB是圆的切线,A,B为切点.

    (1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);
    (2)在(1)的条件下,延长AO交射线PB于C点,若AC=4,PA=3,请补全图形,并求⊙O的半径.
    4、【提出问题】如图①,已知直线l与⊙O相离,在⊙O上找一点M,使点M到直线l的距离最短.

    (1)小明给出下列解答,请你补全小明的解答.
    小明的解答
    过点O作ON⊥l,垂足为N,ON与⊙O的交点M即为所求,此时线段MN最短.
    理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
    ∵OP+PQ>OQ,OQ>ON,
    ∴ .
    又ON=OM+MN;
    ∴OP+PQ>OM+MN.
    又 ,
    ∴ .
    (2)【操作实践】如图②,已知直线l和直线外一点A,线段MN的长度为1.请用直尺和圆规作出满足条件的某一个⊙O,使⊙O经过点A,且⊙O上的点到直线l的距离的最小值为1.(不写作法,保留作图痕迹并用水笔加黑描粗)
    (3)【应用尝试】如图③,在Rt△ABC中,∠C=90,∠B=30,AB=8,⊙O经过点A,且⊙O上的点到直线BC的距离的最小值为2,距离最小值为2时所对应的⊙O上的点记为点P,若点P在△ABC的内部(不包括边界),则⊙O的半径r的取值范围是 .
    5、如图,⊙O是ABC的外接圆,∠ABC=45°,OCAD,AD交BC的延长线于D,AB交OC于E.

    (1)求证:AD是⊙O的切线;
    (2)若AE=,CE=2,求⊙O的半径和线段BC的长.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
    【详解】
    解:连接,

    ,点O为AB中点.

    CO为⊙C的半径,
    是的切线,
    ⊙C 与AB的位置关系是相切
    故选B
    【点睛】
    本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
    2、C
    【解析】
    【分析】
    要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.
    【详解】
    解:∵⊙O的半径为3cm,OA=6cm,
    ∴d>r,
    ∴点A与⊙O的位置关系是:点A在⊙O外,
    故选:C.
    【点睛】
    本题主要考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.
    3、B
    【解析】
    【分析】
    求出正五边形的一个内角的度数,再根据等腰三角形的性质和三角形的内角和定理计算即可.
    【详解】
    解:∵正五边形ABCDE中,
    ∴∠BCD==108°,CB=CD,
    ∴∠CBD=∠CDB=(180°-108°)=36°,
    故选:B.
    【点睛】
    本题考查了正多边形和圆,求出正五边形的一个内角度数是解决问题的关键.
    4、C
    【解析】
    【分析】
    利用正五边形的性质,圆的性质,相似三角形的判定和性质,黄金分割定理判断即可.
    【详解】
    如图,连接AB,BC,CD,DE,EA,
    ∵点M是线段AD、BE的黄金分割点,也是线段NE、AH的黄金分割点,
    ∴,
    ∵AB=BC=CD=DE=EA,
    ∴∠DAE=∠AEB,
    ∴AM=ME,
    ∴,
    ∴A正确,不符合题意;
    ∵点M是线段AD、BE的黄金分割点,也是线段NE、AH的黄金分割点,
    ∴点F是线段BD的黄金分割点,
    ∴,
    ∵AB=BC=CD=DE=EA,∠BCD=∠AED,
    ∴△BCD≌△AED,
    ∴AD=BD,
    ∴,
    ∴B正确,不符合题意;

    ∵AB=BC=CD=DE=EA, ∠BAE=108°,
    ∴∠BAC=∠CAD=∠DAE,
    ∴∠CAD=36°,
    ∴D正确,不符合题意;
    ∵∠CAD=36°, AN=BN=AM=ME,
    ∴∠ANM=∠AMN=72°,
    ∴AM>MN,
    ∴C错误,符合题意;
    故选C.
    【点睛】
    本题考查了圆的性质,正五边形的性质,三角形的全等,黄金分割,熟练掌握圆的性质,正五边形的性质,黄金分割的意义是解题的关键.
    5、B
    【解析】
    【分析】
    画出图形,作,交BE于点D.根据等腰直角三角形的性质和勾股定理可求出AD的长,再由AD和AC的长作比较即可判断①②;由前面所求的AD的长和AB的长,结合该三角形外接圆的半径长,即可判断该外接圆的圆心可在AB上方,也可在AB下方,其与AE的交点即为C点,为两点不唯一,可判断其不符合题意.
    【详解】
    如图,,,点C在射线上.作,交BE于点D.
    ∵,
    ∴为等腰直角三角形,
    ∴,
    ∴不存在的三角形ABC,故①不符合题意;
    ∵,,AC=8,
    而AC>6,
    ∴存在的唯一三角形ABC,
    如图,点C即是.

    ∴,使得BC的长唯一成立,故②符合题意;
    ∵,,
    ∴存在两个点C使的外接圆的半径等于4,两个外接圆圆心分别在AB的上、下两侧,如图,点C和即为使的外接圆的半径等于4的点.

    故③不符合题意.
    故选B.
    【点睛】
    本题考查等腰直角三角形的判定和性质,勾股定理,三角形外接圆的性质.利用数形结合的思想是解答本题的关键.
    6、C
    【解析】
    【分析】
    由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
    【详解】
    解:∵直线交x轴于点A,交y轴于点B,
    ∴令x=0,得y=-3,令y=0,得x=-4,
    ∴A(-4,0),B(0,-3),
    ∴OA=4,OB=3,
    ∴AB=5,
    设⊙P与直线AB相切于D,
    连接PD,

    则PD⊥AB,PD=1,
    ∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
    ∴△APD∽△ABO,
    ∴,
    ∴,
    ∴AP= ,
    ∴OP= 或OP= ,
    ∴P或P,
    故选:C.
    【点睛】
    本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.
    7、D
    【解析】
    【分析】
    如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
    【详解】
    解:如图所示,设圆的圆心为O,连接OC,OB,
    ∵AC,AB都是圆O的切线,
    ∴∠OCA=∠OBA=90°,OC=OB,
    又∵OA=OA,
    ∴Rt△OCA≌Rt△OBA(HL),
    ∴∠OAC=∠OAB,
    ∵∠DAC=60°,
    ∴,
    ∴∠AOB=30°,
    ∴OA=2AB=6,
    ∴,
    ∴圆O的直径为,
    故选D.

    【点睛】
    本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
    8、B
    【解析】
    【分析】
    由已知点(2,3)可求该点到x轴,y轴的距离,再与半径比较,确定圆与坐标轴的位置关系.设d为直线与圆的距离,r为圆的半径,则有若dr,则直线与圆相离.
    【详解】
    解:∵点(2,3)到x轴的距离是3,等于半径,
    到y轴的距离是2,小于半径,
    ∴圆与y轴相交,与x轴相切.
    故选B.
    【点睛】
    本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.
    9、A
    【解析】
    【分析】
    根据直线l和⊙O相交⇔d<r,即可判断.
    【详解】
    解:∵⊙O的半径为5,直线l与⊙O相交,
    ∴圆心D到直线l的距离d的取值范围是0≤d<5,
    故选:A.
    【点睛】
    本题考查直线与圆的位置关系,解题的关键是记住①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.
    10、C
    【解析】
    【分析】
    首先证明∠ABD=90°,由∠BOC=50°,根据圆周角定理求出∠A的度数即可解决问题.
    【详解】
    解:∵BD是切线,
    ∴BD⊥AB,
    ∴∠ABD=90°,
    ∵∠BOC=50°,
    ∴∠A=∠BOC=25°,
    ∴∠D=90°﹣∠A=65°,
    故选:C.
    【点睛】
    本题考查的是切线的性质、圆周角定理,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.
    二、填空题
    1、
    【解析】
    【分析】
    连接OE,首先由弧长公式求得∠EOD=60°;然后利用△BEO的性质得到线段OB的长度,易得AC与BC的长度;最后根据S阴影=S△ABC﹣S扇形OCE﹣S△OBE解答.
    【详解】
    解:如图,连接OE,
    ∵以CD为直径的⊙与AB相切于点E,
    ∴OE⊥BE.
    设∠EOD=n°,
    ∵OD= CD=1,弧DE的长为π,
    ∴=π.
    ∴∠EOD=60°.
    ∴∠B=30°,∠COE=120°.
    ∴OB=2OE=2,BE=,AB=2AC,
    ∵AC=AE,
    ∴AC=BE=.
    ∴S阴影=S△ABC﹣S扇形OCE﹣S△OBE
    =××3﹣﹣×1×=﹣.
    故答案是:﹣.

    【点睛】
    考查了切线的性质,弧长的计算和扇形面积的计算,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.
    2、1或4或7
    【解析】
    【分析】
    的一边所在直线与半圆O所在的圆相切有三种情况:当点C与点E重合、点O与点C重合以及点D与点C重合,分别找出点O运动的路程,即可求出答案.
    【详解】

    如图,当点C与点E重合时,AC与半圆O所在的圆相切,
    ∵,
    ∴,
    ∴,即点O运动了2cm,
    ∴,
    当AB与半圆O所在的圆相切时,
    过点C作交于点F,
    ∵,,
    ∴,
    ∴,即点O与点C重合,
    ∴点O运动了8cm,
    ∴,
    当点C与点D重合时,AC与半圆O所在的圆相切,
    ,即点O运动了14cm,
    ∴,
    故答案为:1或4或7.
    【点睛】
    考查了直线与圆的位置关系和点与圆的位置关系.并能根据圆心到直线的距离来判断直线与圆的位置关系.
    3、##
    【解析】
    【分析】
    连接OB,OD,根据正多边形内角和公式可求出∠E、∠A,根据切线的性质可求出∠OBA、∠ODE,从而可求出∠BOD的度数,根据弧长的公式即可得到结论.
    【详解】
    解:连接OB,OD,

    ∵五边形ABCDE是正五边形,
    ∴∠E=∠A=.
    ∵AB、DE与⊙O相切,
    ∴∠OBA=∠ODE=90°,
    ∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,
    ∴劣弧BD的长为,
    故答案为:.
    【点睛】
    本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.
    4、##
    【解析】
    【分析】
    连接OC,证明CD⊥OC;运用勾股定理求出OD=10,过点A作AF⊥DC,交DC延长线于点F,过点C作CG⊥AD于点G,在Rt△OCD中运用等积关系求出CD,同理,在△ACD中运用等积关系可求出AF
    【详解】
    解:连接OC,

    ∵AB是圆的直径,







    ∴,即OC⊥CD
    ∵的半径为


    在Rt△OCD中,


    过点A作AF⊥DC,交DC延长线于点F,过点C作CG⊥AD于点G,

    ∴,解得,
    同理:


    故答案为:
    【点睛】
    本题考查了切线的判定、三角形面积、勾股定理等知识,解题的关键是作辅助线,构造直角三角形.
    5、5
    【解析】
    【分析】
    根据圆的确定方法做出过A,B,C三点的外接圆,从而得出答案.
    【详解】
    如图,分别作AB、BC的中垂线,两直线的交点为O,

    以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,
    由图可知,⊙O还经过点D、E、F、G、H这5个格点,
    故答案为5.
    【点睛】
    此题考查了确定圆的方法,三角形的外接圆,解题的关键是根据题意确定三角形ABC外接圆的圆心.
    三、解答题
    1、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)要证明DE是⊙O的切线,所以连接OD,只要求出∠ODE=90°即可解答;
    (2)连接BD,利用Rt△ADB的面积加上弓形面积即可求出阴影部分的面积.
    (1)
    证明:连接OD,

    ∵,
    ∴∠CAD=∠BAD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∴∠CAD=∠ODA,
    ∴AE∥OD,
    ∴∠E+∠ODE=90°,
    ∵DE⊥AC,
    ∴∠E=90°,
    ∴∠ODE=180°﹣∠E=90°,
    ∵OD是圆O的半径,
    ∴DE是⊙O的切线;
    (2)
    连接BD,

    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∵∠ADE=60°,∠E=90°,
    ∴∠CAD=90°﹣∠ADE=30°,
    ∴∠DAB=∠CAD=30°,
    ∴AB=2BD,
    ∵,

    ∴BD=2,BA=4,
    ∴OD=OB=2,
    ∴△ODB是等边三角形,
    ∴∠DOB=60°,
    ∴△ADB的面积=AD•DB
    =×2×2
    =2,
    ∵OA=OB,
    ∴△DOB的面积=△ADB的面积=,
    ∴阴影部分的面积为:
    △ADB的面积+扇形DOB的面积﹣△DOB的面积
    =2﹣
    =,
    ∴阴影部分的面积为:.
    【点睛】
    本题考查了切线的判定与性质,圆周角定理,扇形的面积公式,勾股定理,含30°角的直角三角形,根据题目的已知条件并结合图形,添加适当的辅助线是解题的关键.
    2、 (1)BP=2
    (2)①4.8;②9.6
    【解析】
    【分析】
    (1)连接PT,由⊙P与AD相切于点T,可得四边形ABPT是矩形,即得PT=AB=4=PE,在Rt△BPE中,用勾股定理即得BP=2;
    (2)①由⊙P与CD相切,有PC=PE,设BP=x,则PC=PE=10-x,在Rt△BPE中,由勾股定理得x2+22=(10-x)2,即可解得BP=4.8;②点M在⊙P内的路径为EM,过P作PN⊥EM于N,由EM是△ABQ的中位线,可得四边形BPNE是矩形,即知EN=BP=4.8,故EM=2EN=9.6.
    (1)
    连接PT,如图:

    ∵⊙P与AD相切于点T,
    ∴∠ATP=90°,
    ∵四边形ABCD是矩形,
    ∴∠A=∠B=90°,
    ∴四边形ABPT是矩形,
    ∴PT=AB=4=PE,
    ∵E是AB的中点,
    ∴BE=AB=2,
    在Rt△BPE中,;
    (2)
    ①∵⊙P与CD相切,
    ∴PC=PE,
    设BP=x,则PC=PE=10-x,
    在Rt△BPE中,BP2+BE2=PE2,
    ∴x2+22=(10-x)2,
    解得x=4.8,
    ∴BP=4.8;
    ②点Q从点B出发沿射线BC移动,M是AQ的中点,点M在⊙P内的路径为EM,过P作PN⊥EM于N,如图:

    由题可知,EM是△ABQ的中位线,
    ∴EM∥BQ,
    ∴∠BEM=90°=∠B,
    ∵PN⊥EM,
    ∴∠PNE=90°,EM=2EN,
    ∴四边形BPNE是矩形,
    ∴EN=BP=4.8,
    ∴EM=2EN=9.6.
    故答案为:9.6.
    【点睛】
    本题考查矩形与圆的综合应用,涉及直线和圆相切、勾股定理、动点轨迹等,解题的关键是理解M的轨迹是△ABQ的中位线.
    3、 (1)见解析;
    (2)见解析,的半径为
    【解析】
    【分析】
    (1)过点B作BP的垂线,作∠APB的平分线,二线的交点就是圆心;
    (2)根据切线的性质,利用勾股定理,建立一元一次方程求解即可.
    (1)
    如图所示,点O即为所求

    (2)
    如图,∵PA是圆的切线,AO是半径,PB是圆的切线,
    ∴∠CAP=90°,PA=PB=3,∠CBO=90°,
    ∵AC=4,
    ∴PC==5,BC=5-3=2,
    设圆的半径为x,则OC=4-x,
    ∴,
    解得x=,
    故圆的半径为.
    【点睛】
    本题考查了垂线的画法,角的平分线的画法,切线的性质,切线长定理,勾股定理,一元一次方程的解法,熟练掌握切线的性质,切线长定理和勾股定理是解题的关键.
    4、 (1)OP+PQ>ON; OP=OM;PQ>MN
    (2)见解析
    (3)1<r<4
    【解析】
    【分析】
    (1)利用两点之间线段最短解答即可;
    (2)过点A作l的线AB,截取BC=MN,以AC为直径作⊙O;
    (3)作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,求出⊙O和⊙O′的半径,从而求出半径r的范围.
    (1)
    理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
    ∵OP+PQ>OQ,OQ>ON,
    ∴OP+PQ>ON.
    又ON=OM+MN;
    ∴OP+PQ>OM+MN.
    又 OP=OM,
    ∴PQ>MN.
    故答案为:OP+PQ>ON, OP=OM,PQ>MN;
    (2)
    解:如图,

    ⊙O是求作的图形;
    (3)
    (3)如图2,

    作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,
    ∴∠FEO′=∠AFE=90°,
    ∴AF∥EO′,
    ∴∠AEO′=∠BAC=60°,
    ∵AO′=EO′,
    ∴△ADO′是等边三角形,
    ∴AE=AO′,
    ∵AB=8,∠B=30°,
    ∴AC=AB=4,
    ∴AF=2,
    ∴⊙O的半径是1,
    ∴AE=AB=4,
    ∴1<r<4,
    故答案是:1<r<4.
    【点睛】
    本题考查了与圆的有关位置,等边三角形判定和性质,尺规作图等知识,解决问题的关键是找出临界位置,作出图形.
    5、 (1)见解析
    (2)4,
    【解析】
    【分析】
    (1)连接OA.由及圆周角定理求出∠OAD=90°,即可得到结论;
    (2)设⊙O的半径为R,在Rt△OAE中,勾股定理求出R, 延长CO交⊙O于F,连接AF,证明△CEB∽△AEF,得到,由此求出⊙O的半径和线段BC的长.
    (1)
    证明:连接OA.
    ∵,
    ∴∠AOC+∠OAD=180°,
    ∵∠AOC=2∠ABC=2×45°=90°,
    ∴∠OAD=90°,
    ∴OA⊥AD,
    ∵OA是半径,
    ∴AD是⊙O的切线.

    (2)
    解:设⊙O的半径为R,则OA=R,OE=R-2.
    在Rt△OAE中,,
    ∴,
    解得或(不合题意,舍去),
    延长CO交⊙O于F,连接AF,
    ∵∠AEF=∠CEB,∠B=∠AFE,
    ∴△CEB∽△AEF,
    ∴,
    ∵CF是直径,
    ∴CF=8,∠CAF=90°,
    又∵∠F=∠ABC=45°,
    ∴∠F=∠ACF=45°,
    ∴AF=,
    ∴,
    ∴BC=.

    【点睛】
    此题考查了证明直线是圆的切线,勾股定理,相似三角形的判定及性质,直径所对的圆周角是直角的性质,等腰直角三角形的性质,正确作出辅助线解题是解题的关键.

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评,共35页。试卷主要包含了如图,FA等内容,欢迎下载使用。

    2021学年第29章 直线与圆的位置关系综合与测试精品习题:

    这是一份2021学年第29章 直线与圆的位置关系综合与测试精品习题,共30页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    初中数学第29章 直线与圆的位置关系综合与测试优秀同步达标检测题:

    这是一份初中数学第29章 直线与圆的位置关系综合与测试优秀同步达标检测题,共31页。试卷主要包含了如图,将的圆周分成五等分等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map