搜索
    上传资料 赚现金
    英语朗读宝

    精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系单元测试试题(含解析)

    精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系单元测试试题(含解析)第1页
    精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系单元测试试题(含解析)第2页
    精品试题冀教版九年级数学下册第二十九章直线与圆的位置关系单元测试试题(含解析)第3页
    还剩28页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版第29章 直线与圆的位置关系综合与测试精品单元测试精练

    展开

    这是一份冀教版第29章 直线与圆的位置关系综合与测试精品单元测试精练,共31页。试卷主要包含了如图,FA等内容,欢迎下载使用。
    九年级数学下册第二十九章直线与圆的位置关系单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,中,OAB边上一点,ACBC都相切,若,则的半径为(       A.1 B.2 C. D.2、若正六边形的边长为6,则其外接圆半径与内切圆半径的大小分别为(  )A.6,3 B.6,3 C.3,6 D.6,33、如图,⊙O是正五边形ABCDE的外接圆,点P的一点,则∠CPD的度数是(  )A.30° B.36° C.45° D.72°4、如图,FAFB分别与⊙O相切于AB两点,点C为劣弧AB上一点,过点C的切线分别交FAFBDE两点,若∠F=60°,△FDE的周长为12,则⊙O的半径长为(  )A. B.2 C.2 D.35、如图,有一个亭子,它的地基是边长为4m的正六边形,则地基的面积为(  )A.4m2 B.12m2 C.24m2 D.24m26、在ABC中,,点OAB中点.以点C为圆心,CO长为半径作⊙C,则⊙CAB的位置关系是(       A.相交 B.相切C.相离 D.不确定7、如图,边长为4的正三角形外接圆,以其各边为直径作半圆,则图中阴影部分面积为(  )A.12+2π B.4+π C.24+2π D.12+14π8、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是(        A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<29、如图,ABBCCD分别与⊙O相切于EFG三点,且ABCDBO=3,CO=4,则OF的长为(  )A.5 B. C. D.10、已知点A是⊙O外一点,且⊙O的半径为3,则OA可能为(       A.1 B.2 C.3 D.4第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、以平面直角坐标系原点O为圆心,半径为3的圆与直线x=3的位置关系是______.2、如图,在平面直角坐标系xOy中,Px轴正半轴上一点.已知点的外接圆.(1)点M的纵坐标为______;(2)当最大时,点P的坐标为______.3、如图,A是⊙O上的一点,且AB是⊙O的切线,CD是⊙O的直径,连接ACAD.若∠BAC=30°,CD=2,则的长为 _____.4、已知正六边形的周长是24,则这个正六边形的半径为_____ .5、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在中,平分,与交于点,垂足为,与交于点,经过三点的交于点(1)求证的切线;(2)若,求的半径.2、如图,在中,,⊙O的外接圆,过点C,交⊙O于点D,连接ADBC于点E,延长DC至点F,使,连接AF(1)求证:(2)求证:AF是⊙O的切线.3、如图,的切线,点在上,相交于的直径,连接,若(1)求证:平分(2)当时,求的半径长.4、如图,的直径,是半径,连接.延长至点,使,过点的延长线于点(1)求证:的切线;(2)若,求半径的长.5、如图,在RtABC中,∠ACBRt∠,AC为直径的半圆OAB于点DEBC的中点,连结DECD.过点DDFAC于点F(1)求证:DE是⊙O的切线;(2)若AD=5,DF=3,求⊙O的半径. -参考答案-一、单选题1、D【解析】【分析】ODACDOEBCE,如图,设⊙O的半径为r,根据切线的性质得OD=OE=r,易得四边形ODCE为正方形,则CD=OD=r,再证明ADO∽△ACB,然后利用相似比得到,再根据比例的性质求出r即可.【详解】解:作ODACDOEBCE,如图,设⊙O的半径为r∵⊙OACBC都相切,OD=OE=r而∠C=90°,∴四边形ODCE为正方形,CD=OD=rODBC∴△ADO∽△ACB AF=AC-rBC=3,AC=4,代入可得,r=故选:D【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了相似三角形的判定与性质.2、B【解析】【分析】如图1,⊙O是正六边形的外接圆,连接OAOB,求出∠AOB=60°,即可证明△OAB是等边三角形,得到OA=AB=6;如图2,⊙O1是正六边形的内切圆,连接O1AO1B,过点O1O1MABM,先求出∠AO1B=60°,然后根据等边三角形的性质和勾股定理求解即可.【详解】解:(1)如图1,⊙O是正六边形的外接圆,连接OAOB∵六边形ABCDEF是正六边形,∴∠AOB=360°÷6=60°,OA=OB∴△OAB是等边三角形,OA=AB=6;(2)如图2,⊙O1是正六边形的内切圆,连接O1AO1B,过点O1O1MABM∵六边形ABCDEF是正六边形,∴∠AO1B=60°,O1A= O1B∴△O1AB是等边三角形,O1A= AB=6,O1MAB∴∠O1MA=90°,AMBMAB=6,AMBMO1M故选B.【点睛】本题主要考查了正多边形与圆,等边三角形的性质与判定,勾股定理,熟知正多边形与圆的知识是解题的关键.3、B【解析】【分析】连接OCOD.求出∠COD的度数,再根据圆周角定理即可解决问题;【详解】解:如图,连接OCOD∵五边形ABCDE是正五边形,∴∠COD=72°,∴∠CPDCOD=36°,故选:B【点睛】本题主要考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、C【解析】【分析】根据切线长定理可得,,再根据∠F=60°,可知为等边三角形,,再△FDE的周长为12,可得,求得,再作,即可求解.【详解】解:FAFB分别与⊙O相切于AB两点,过点C的切线分别交FAFBDE两点,则:∵∠F=60°,为等边三角形,∵△FDE的周长为12,即,即,如下图:,则,由勾股定理可得:解得故选C【点睛】此题考查了圆的有关性质,切线的性质、切线长定理,垂径定理以及等边三角形的判定与性质,解题的关键是灵活运用相关性质进行求解.5、D【解析】【分析】先根据等边三角形的性质求出△OBC的面积,然后由地基的面积是△OBC的6倍即可得到答案【详解】解:如图所示,正六边形ABCDEF,连接OBOC,过点OOPBCP由题意得:BC=4cm,∵六边形ABCD是正六边形,∴∠BOC=360°÷6=60°,又∵OB=OC∴△OBC是等边三角形,故选D.【点睛】本题主要考查了正多边形和圆,等边三角形的性质与判定,勾股定理,熟知正多边形和圆的关系是解题的关键.6、B【解析】【分析】根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断的切线,进而可得⊙CAB的位置关系【详解】解:连接,,点OAB中点.CO为⊙C的半径,的切线,CAB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.7、A【解析】【分析】正三角形的面积加上三个小半圆的面积,再减去中间大圆的面积即可得到结果.【详解】解:正三角形的面积为:三个小半圆的面积为:,中间大圆的面积为:所以阴影部分的面积为:故选:【点睛】本题考查了正多边形与圆,圆的面积的计算,正三角形的面积的计算,正确的识别图形是解题的关键.8、A【解析】【分析】点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.【详解】解:∵⊙O的半径为4,点P 在⊙O外部,OP需要满足的条件是OP>4,故选:A【点睛】此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.9、D【解析】【分析】连接OFOEOG,根据切线的性质及角平分线的判定可得OB平分OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.【详解】解:连接OFOEOGAB、BC、CD分别与相切,,且OB平分OC平分故选:D.【点睛】题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.10、D【解析】【分析】根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.【详解】解:∵点A为⊙O外的一点,且⊙O的半径为3,∴线段OA的长度>3.故选:D.【点睛】此题考查了点和圆的位置关系与数量之间的联系:点到圆心的距离大于圆的半径,则点在圆外.二、填空题1、相切【解析】【分析】本题应将原点到直线x=3的距离与半径对比即可判断.【详解】解:∵原点到直线x=3的距离为3,半径为3,则有3=3,∴这个圆与直线x=3相切.故答案为:相切.【点睛】本题考查了直线与圆的位置关系、坐标与图形性质.直线与圆相切,直线到圆的距离等于半径;与圆相离,直线到圆的距离大于半径.2、     5     (4,0)【解析】【分析】(1)根据点M在线段AB的垂直平分线上求解即可;(2)点P在⊙M切点处时,最大,而四边形OPMD是矩形,由勾股定理求解即可.【详解】解:(1)∵⊙MABP的外接圆,∴点M在线段AB的垂直平分线上,A(0,2),B(0,8),∴点M的纵坐标为:故答案为:5;(2)过点,作⊙Mx轴相切,则点M在切点处时,最大,理由:若点x轴正半轴上异于切点P的任意一点,交⊙M于点E,连接AE,则∠AEB=∠APB∵∠AEB是ΔAE的外角,∴∠AEB>∠AB,∵∠APB>∠AB,即点P在切点处时,∠APB最大,∵⊙M经过点A(0,2)、B(0,8),∴点M在线段AB的垂直平分线上,即点M在直线y=5上,∵⊙Mx轴相切于点PMPx轴,从而MP=5,即⊙M的半径为5,AB的中点为D,连接MDAM,如上图,则MDABAD=BD=AB=3,BM=MP=5,而∠POD=90°,∴四边形OPMD是矩形,从而OP=MD由勾股定理,得MD=OP=MD=4,∴点P的坐标为(4,0),故答案为:(4,0).【点睛】本题考查了切线的性质,线段垂直平分线的性质,矩形的判定及勾股定理,正确作出图形是解题的关键.3、【解析】【分析】连接OA,由切线的性质得出AOAB,得出△OAC是等边三角形,求出∠AOD=120°,由弧长公式可得出答案.【详解】解:连接OAAB是⊙O的切线,AOAB∴∠OAB=90°,∵∠BAC=30°,∴∠OAC=60°,OAOC∴△OAC是等边三角形,∴∠C=∠AOC=60°,∴∠AOD=120°,CD=2,的长为故答案为【点睛】本题考查了切线的性质以及弧长公式,切线的性质定理:圆的切线垂直于过切点的半径;弧长公式:为圆心角的度数,R表示圆的半径).4、4【解析】【分析】由于正六边形可以由其半径分为六个全等的正三角形,而三角形的边长就是正六边形的半径,由此即可求解.【详解】解:∵正六边形可以由其半径分为六个全等的正三角形,而三角形的边长就是正六边形的半径,又∵正六边形的周长为24,∴正六边形边长为24÷6=4,∴正六边形的半径等于4.故答案为4.【点睛】此题主要考查正多边形和圆,解题的关键是熟练掌握基本知识,属于中考基础题.5、【解析】【分析】先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.【详解】解:∵BC是圆O的切线,∴∠OBC=90°,∵四边形ABCO是平行四边形,AO=BC又∵AO=BOBO=BC∴∠BOC=∠BCO=45°,OD=OB∴∠ODB=∠OBD∵∠ODB+∠OBD=∠BOC∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,故答案为:22.5°.【点睛】本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.三、解答题1、 (1)见解析(2)【解析】【分析】(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证的切线;(2)证明,利用相似三角形的性质可求的半径.(1)证明:连接是直径,的中点.平分又∵又∵经过半径的外端,的切线.(2)解:∵中,中,.设半径为,则的半径为【点睛】本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.2、 (1)见解析;(2)见解析【解析】【分析】(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=ADC得∠BCD=∠ADC,从而得证;(2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AFBC,从而得OAAF,从而得证.(1)解:∵又∵(2)解:如图,连接OA∵已知AF为⊙O的切线.【点睛】本题考查了圆周角定理、垂径定理推论、切线的判定、平行线的判定和性质,熟练掌握切线的判定定理是解题的关键.3、 (1)见解析(2)的半径长为【解析】【分析】(1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;(2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径(1)证明:如图,连接的切线,,即平分(2)解:如图,连接中,由勾股定理得:的直径,,即解得:的半径长为【点睛】本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.4、 (1)证明见解析(2)⊙O半径的长为【解析】【分析】(1)根据角度的数量关系,可得,即,进而可证的切线;(2)由题意知,由可得的值,由,得,在中,,求解即可.(1)证明:∵的直径的切线;(2)解:∵中,,即半径长为【点睛】本题考查了切线的判定,勾股定理,正切值.解题的关键在于对知识的灵活运用.5、 (1)见解析(2)【解析】【分析】1)连接OD,求出DECEBE,推出∠EDC+ODC=∠ECD +OCD,求出∠ACB=∠ODE90°,根据切线的判定推出即可.2)根据勾股定理求出AF3,设OD=x,根据勾股定理列出方程即可.(1)证明:连接ODAC是直径,∴∠ADC90°,∴∠BDC180°﹣∠ADC90°,EBC的中点,∴∠EDC=∠ECDOCOD∴∠ODC=∠OCD∴∠EDC+ODC=∠ECD +OCD即∠ACB=∠ODE∵∠ACB90°,∴∠ODE90°,又∵OD是半径,DEO的切线.(2)解:OD=xDFACAD=5,DF=3,在三角形ADF中,解得,O的半径为【点睛】本题考查了切线的证明和直角三角形的性质,解题关键是熟练运用直角三角形和等腰三角形的性质证明切线,利用勾股定理求半径. 

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课时作业:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课时作业,共33页。试卷主要包含了如图,FA等内容,欢迎下载使用。

    数学九年级下册第29章 直线与圆的位置关系综合与测试精品单元测试同步训练题:

    这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试精品单元测试同步训练题,共36页。

    数学九年级下册第29章 直线与圆的位置关系综合与测试单元测试巩固练习:

    这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试单元测试巩固练习,共31页。试卷主要包含了如图,,如图,将的圆周分成五等分等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map