初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课堂检测
展开
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课堂检测,共32页。试卷主要包含了如图所示,在的网格中,A等内容,欢迎下载使用。
九年级数学下册第二十九章直线与圆的位置关系章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、直角三角形的外接圆半径为3,内切圆半径为1,则该直角三角形的周长是( )
A.12 B.14 C.16 D.18
2、如图,在平面直角坐标系中,直线分别与轴、轴相交于点、,点、分别是正方形的边、上的动点,且,过原点作,垂足为,连接、,则面积的最大值为( )
A. B.12 C. D.
3、若正方形的边长为4,则它的外接圆的半径为( )
A. B.4 C. D.2
4、在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法错误的是( )
A.当a<5时,点B在⊙A内 B.当1<a<5时,点B在⊙A内
C.当a<1时,点B在⊙A外 D.当a>5时,点B在⊙A外
5、若正六边形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )
A.6,3 B.6,3 C.3,6 D.6,3
6、如图所示,在的网格中,A、B、D、O均在格点上,则点O是△ABD的( )
A.外心 B.重心 C.中心 D.内心
7、如图,有一个亭子,它的地基是边长为4m的正六边形,则地基的面积为( )
A.4m2 B.12m2 C.24m2 D.24m2
8、已知⊙O的半径等于8,点P在直线l上,圆心O到点P的距离为8,那么直线l与⊙O的位置关系是( )
A.相切 B.相交
C.相离、相切或相离 D.相切或相交
9、如图,与相切于点,经过的圆心与交于,若,则( )
A. B. C. D.
10、已知⊙O的半径为4,,则点A在( )
A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,过⊙O外一点P,作射线PA,PB分别切⊙O于点A,B,,点C在劣弧AB上,过点C作⊙O的切线分别与PA,PB交于点D,E.则______度.
2、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________.
3、已知⊙O的半径为5cm,OP= 4cm,则点P与⊙O的位置关系是点P在_____.(填“圆内”、“圆外”或“圆上”)
4、如图,在⊙O中,AB是⊙O的内接正六边形的一边,BC是⊙O的内接正十边形的一边,则∠ABC=______°.
5、在下图中,是的直径,要使得直线是的切线,需要添加的一个条件是________.(写一个条件即可)
三、解答题(5小题,每小题10分,共计50分)
1、如图,AB是ΘO的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.
(1)判断DE所在直线与ΘO的位置关系,并说明理由;
(2)若AE=4,ED=2,求ΘO的半径.
2、如图,中,.
(1)用直尺和圆规作,使圆心在边上,且与、所在直线相切(不写作法,保留作图痕迹);
(2)在(1)的条件下,再从以下两个条件①“,的周长为12cm;②,”中选择一个作为条件,并求的半径.
3、如图,是的切线,点在上,与相交于,是的直径,连接,若.
(1)求证:平分;
(2)当,时,求的半径长.
4、如图,在中,,平分,与交于点,,垂足为,与交于点,经过,,三点的与交于点.
(1)求证是的切线;
(2)若,,求的半径.
5、如图,AB为的切线,B为切点,过点B作,垂足为点E,交于点C,连接CO,并延长CO与AB的延长线交于点D,与交于点F,连接AC.
(1)求证:AC为的切线:
(2)若半径为2,.求阴影部分的面积.
-参考答案-
一、单选题
1、B
【解析】
【分析】
⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,得出正方形CDIF推出CD=CF=1,根据切线长定理得出AD=AE,BE=BF,CF=CD,求出AD+BF=AE+BE=AB=6,即可求出答案.
【详解】
解:如图,⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,
则∠CDI=∠C=∠CFI=90°,ID=IF=1,
∴四边形CDIF是正方形,
∴CD=CF=1,
由切线长定理得:AD=AE,BE=BF,CF=CD,
∵直角三角形的外接圆半径为3,内切圆半径为1,
∴AB=6=AE+BE=BF+AD,
即△ABC的周长是AC+BC+AB=AD+CD+CF+BF+AB=6+1+1+6=14,
故选:B.
【点睛】
本题考查了直角三角形的外接圆与内切圆,正方形的性质和判定,切线的性质,切线长定理等知识点的综合运用.
2、D
【解析】
【分析】
先证明ON=CN,再证点H在以ON直径的圆上运动,则当点H在QM的延长线上时,点H到AB的距离最大,由相似三角形的性质可求MK,KQ的长,由三角形的面积公式可求解.
【详解】
解:如图,连接AD,交EF于N,连接OC,取ON的中点M,连接MH,过点M作MQ⊥AB于Q,交AO于点K,作MP⊥OA与点P,
∵直线分别与x轴、y轴相交于点A、B,
∴点A(4,0),点B(0,-3),
∴OB=3,OA=4,
∴,
∵四边形ACDO是正方形,
∴OD//AC,AO=AC=OD=4,OC=4,∠COA=45°,
∴∠EDN=∠NAF,∠DEN=∠AFN,
又∵DE=AF,
∴△DEN≌△AFN(ASA),
∴DN=AN,EN=NF,
∴点N是AD的中点,即点N是OC的中点,
∴ON=NC=2,
∵OH⊥EF,
∴∠OHN=90°,
∴点H在以ON直径的圆上运动,
∴当点H在QM的延长线上时,点H到AB的距离最大,
∵点M是ON的中点,
∴OM=MN=,
∵MP⊥OP,∠COA=45°,
∴OP=MP=1,
∴AP=3,
∵∠OAB+∠OBA=90°=∠OAB+∠AKQ,
∴∠AKQ=∠ABO=∠MKP,
又∵∠AOB=∠MPK=90°,
∴△MPK∽△AOB,
∴,
∴,
∴,
∴,
∵∠AKQ=∠ABO,∠OAB=∠KAQ,
∴△AKQ∽△ABO,
∴,
∴,
∴,
∴,
∴点H到AB的最大距离为,
∴△HAB面积的最大值,
故选:D.
【点睛】
本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,一次函数的应用等知识,求出MQ的长是解题的关键.
3、C
【解析】
【分析】
根据圆内接正多边形的性质可得正方形的中心即圆心,进而可知正方形的对角线即为圆的直径,根据勾股定理求得正方形对角线的长度即可求得它的外接圆的半径.
【详解】
解:∵四边形是正方形,
∴的交点即为它的外接圆的圆心,
故选C
【点睛】
本题考查了圆内接正多边形的性质,勾股定理,理解正方形的对角线即为圆的直径是解题的关键.
4、A
【解析】
【分析】
根据数轴以及圆的半径可得当d=r时,⊙A与数轴交于两点:1、5,进而根据点到圆心的距离与半径比较即可求得点与圆的位置关系,进而逐项分析判断即可
【详解】
解:∵圆心A在数轴上的坐标为3,圆的半径为2,
∴当d=r时,⊙A与数轴交于两点:1、5,
故当a=1、5时点B在⊙A上;
当d<r即当1<a<5时,点B在⊙A内;
当d>r即当a<1或a>5时,点B在⊙A外.
由以上结论可知选项B、C、D正确,选项A错误.
故选A.
【点睛】
本题考查了数轴,点与圆的位置关系,掌握点与圆的位置关系是解题的关键.
5、B
【解析】
【分析】
如图1,⊙O是正六边形的外接圆,连接OA,OB,求出∠AOB=60°,即可证明△OAB是等边三角形,得到OA=AB=6;如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,先求出∠AO1B=60°,然后根据等边三角形的性质和勾股定理求解即可.
【详解】
解:(1)如图1,⊙O是正六边形的外接圆,连接OA,OB,
∵六边形ABCDEF是正六边形,
∴∠AOB=360°÷6=60°,
∵OA=OB,
∴△OAB是等边三角形,
∴OA=AB=6;
(2)如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,
∵六边形ABCDEF是正六边形,
∴∠AO1B=60°,
∵O1A= O1B,
∴△O1AB是等边三角形,
∴O1A= AB=6,
∵O1M⊥AB,
∴∠O1MA=90°,AM=BM,
∵AB=6,
∴AM=BM,
∴O1M.
故选B.
【点睛】
本题主要考查了正多边形与圆,等边三角形的性质与判定,勾股定理,熟知正多边形与圆的知识是解题的关键.
6、A
【解析】
【分析】
根据网格的特点,勾股定理求得,进而即可判断点O是△ABD的外心
【详解】
解:∵
∴O是△ABD的外心
故选A
【点睛】
本题考查了三角形的外心的判定,勾股定理与网格,理解三角形的外心的定义是解题的关键.三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等.
7、D
【解析】
【分析】
先根据等边三角形的性质求出△OBC的面积,然后由地基的面积是△OBC的6倍即可得到答案
【详解】
解:如图所示,正六边形ABCDEF,连接OB,OC,过点O作OP⊥BC于P,
由题意得:BC=4cm,
∵六边形ABCD是正六边形,
∴∠BOC=360°÷6=60°,
又∵OB=OC,
∴△OBC是等边三角形,
∴,,
∴,
∴,
∴,
故选D.
【点睛】
本题主要考查了正多边形和圆,等边三角形的性质与判定,勾股定理,熟知正多边形和圆的关系是解题的关键.
8、D
【解析】
【分析】
根据垂线段最短,则点O到直线l的距离≤5,则直线l与⊙O的位置关系是相切或相交.
【详解】
解:的半径为8,,
点到直线的距离,
直线与的位置关系是相切或相交.
故选:D.
【点睛】
此题要特别注意OP不一定是点到直线的距离.判断点和直线的位置关系,必须比较点到直线的距离和圆的半径之间的大小关系.
9、B
【解析】
【分析】
连结CO,根据切线性质与相切于点,得出OC⊥BC,根据直角三角形两锐角互余∠COB=90°-∠B=90°-40°=50°,然后利用圆周角定理即可.
【详解】
解:连结CO,
∵与相切于点,
∴OC⊥BC,
∴∠COB+∠B=90°,
∵,
∴∠COB=90°-∠B=90°-40°=50°,
∴.
故选B.
【点睛】
本题考查圆的切线性质,直角三角形两锐角互余性质,圆周角定理,掌握圆的切线性质,直角三角形两锐角互余性质,圆周角定理是解题关键.
10、C
【解析】
【分析】
根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.
【详解】
解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,
∴d>r,
∴点A在⊙O外,
故选:C.
【点睛】
本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.
二、填空题
1、65
【解析】
【分析】
连接OA,OC,OB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分,EO平分,再由各角之间的数量关系可得,,根据等量代换可得,代入求解即可.
【详解】
解:如图所示:连接OA,OC,OB,
∵PA、PB、DE与圆相切于点A、B、E,
∴,,,
∵,
∴,
∵,
∴DO平分,EO平分,
∴,,
∴,,
∴,
故答案为:65.
【点睛】
题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.
2、 4
【解析】
【分析】
设一直角边长为x,另一直角边长为(6-x)根据勾股定理,解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求外接圆的半径为cm,利用三角形面积公式求即可.
【详解】
解:设一直角边长为x,另一直角边长为(6-x),
∵三角形是直角三角形,
∴根据勾股定理,
整理得:,
解得,
这个直角三角形的斜边长为外接圆的直径,
∴外接圆的半径为cm,
三角形面积为.
故答案为;.
【点睛】
本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.
3、圆内
【解析】
【分析】
根据点与圆的位置关系进行解答即可得.
【详解】
解:∵点到圆心的距离d=4
相关试卷
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀同步测试题,共34页。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀随堂练习题,共37页。试卷主要包含了下列四个命题中,真命题是等内容,欢迎下载使用。
这是一份初中数学第29章 直线与圆的位置关系综合与测试优秀同步达标检测题,共31页。试卷主要包含了如图,将的圆周分成五等分等内容,欢迎下载使用。