初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题
展开
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题,共33页。试卷主要包含了在中,,,给出条件等内容,欢迎下载使用。
九年级数学下册第二十九章直线与圆的位置关系定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,是等边三角形的外接圆,若的半径为2,则的面积为( )
A. B. C. D.
2、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为( )
A.10 B.11 C.12 D.13
3、已知⊙O的半径为4,,则点A在( )
A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定
4、在中,,,给出条件:①;②;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC的长唯一.可以选取的是( )
A.① B.② C.③ D.①或③
5、在同一平面内,有一半径为6的⊙O和直线m,直线m上有一点P,且OP=4;则直线m与⊙O的位置关系是 ( )
A.相交 B.相离 C.相切 D.不能确定
6、如图,中,,,点O是的内心.则等于( )
A.124° B.118° C.112° D.62°
7、如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,-3).则经画图操作可知:△ABC的外接圆的圆心坐标是( )
A.(-2,-1) B.(-1,0) C.(-1,-1) D.(0,-1)
8、如图,AB为⊙O的切线,切点为A,连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为( )
A.54° B.36° C.32° D.27°
9、如图,与相切于点,经过的圆心与交于,若,则( )
A. B. C. D.
10、如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作的切线交BE延长线于点C,若∠ADE=36°,则∠C的度数是( )
A.18° B.28° C.36° D.45°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知圆O的半径为10cm,OP=8cm,则点P和圆O的位置关系是________.
2、已知⊙O的半径为5cm,OP= 4cm,则点P与⊙O的位置关系是点P在_____.(填“圆内”、“圆外”或“圆上”)
3、如图,在RtABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF=3,则ABC的面积是______.
4、如图,AB是⊙O的切线,A为切点,连结OA、OB.若OA=5,AB=6,则tan∠AOB=______.
5、如图,过⊙O外一点P,作射线PA,PB分别切⊙O于点A,B,,点C在劣弧AB上,过点C作⊙O的切线分别与PA,PB交于点D,E.则______度.
三、解答题(5小题,每小题10分,共计50分)
1、如图,点E是的内心,AE的延长线交BC于点F,交的外接圆点D.过D作直线.
(1)求证:DM是的切线;
(2)求证:;
(3)若,,求的半径.
2、如图,四边形ACBD内接于⊙O,AB是⊙O的直径,CD平分∠ACB交AB于点E,点P在AB延长线上,.
(1)求证:PC是⊙O的切线;
(2)求证:;
(3)若,△ACD的面积为12,求PB的长.
3、如图,中,.
(1)用直尺和圆规作,使圆心在边上,且与、所在直线相切(不写作法,保留作图痕迹);
(2)在(1)的条件下,再从以下两个条件①“,的周长为12cm;②,”中选择一个作为条件,并求的半径.
4、苏科版教材八年级下册第94页第19题,小明在学过圆之后,对该题进行重新探究,请你和他一起完成问题探究.
【问题探究】小明把原问题转化为动点问题,如图1,在边长为6cm的正方形ABCD中,点E从点A出发,沿边AD向点D运动,同时,点F从点B出发,沿边BA向点A运动,它们的运动速度都是2cm/s,当点E运动到点D时,两点同时停止运动,连接CF、BE交于点M,设点E, F运动时问为t秒.
(1)【问题提出】如图1,点E,F分别在方形ABCD中的边AD、AB上,且,连接BE、CF交于点M,求证:.请你先帮小明加以证明.
(2)如图1,在点E、F的运动过程中,点M也随之运动,请直接写出点M的运动路径长 cm.
(3)如图2,连接CE,在点E、F的运动过程中.
①试说明点D在△CME的外接圆O上;
②若①中的O与正方形的各边共有6个交点,请直接写出t的取值范围.
5、如图,在中,,BO平分,交AC于点O,以点O为圆心,OC长为半径画.
(1)求证:AB是的切线;
(2)若,,求的半径.
-参考答案-
一、单选题
1、D
【解析】
【分析】
过点O作OH⊥BC于点H,根据等边三角形的性质即可求出OH和BH的长,再根据垂径定理求出BC的长,最后运用三角形面积公式求解即可.
【详解】
解:过点O作OH⊥BC于点H,连接AO,BO,
∵△ABC是等边三角形,
∴∠ABC=60°,
∵O为三角形外心,
∴∠OAH=30°,
∴OH=OB=1,
∴BH=,AH=-AO+OH=2+1=3
∴
∴
故选:D
【点睛】
本题考查了等边三角形的性质、含30°角的直角三角形的性质,熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键.
2、A
【解析】
【分析】
作正多边形的外接圆,连接 AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.
【详解】
解:如图,作正多边形的外接圆,连接AO,BO,
∴∠AOB=2∠ADB=36°,
∴这个正多边形的边数为=10.
故选:A.
【点睛】
此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.
3、C
【解析】
【分析】
根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.
【详解】
解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,
∴d>r,
∴点A在⊙O外,
故选:C.
【点睛】
本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.
4、B
【解析】
【分析】
画出图形,作,交BE于点D.根据等腰直角三角形的性质和勾股定理可求出AD的长,再由AD和AC的长作比较即可判断①②;由前面所求的AD的长和AB的长,结合该三角形外接圆的半径长,即可判断该外接圆的圆心可在AB上方,也可在AB下方,其与AE的交点即为C点,为两点不唯一,可判断其不符合题意.
【详解】
如图,,,点C在射线上.作,交BE于点D.
∵,
∴为等腰直角三角形,
∴,
∴不存在的三角形ABC,故①不符合题意;
∵,,AC=8,
而AC>6,
∴存在的唯一三角形ABC,
如图,点C即是.
∴,使得BC的长唯一成立,故②符合题意;
∵,,
∴存在两个点C使的外接圆的半径等于4,两个外接圆圆心分别在AB的上、下两侧,如图,点C和即为使的外接圆的半径等于4的点.
故③不符合题意.
故选B.
【点睛】
本题考查等腰直角三角形的判定和性质,勾股定理,三角形外接圆的性质.利用数形结合的思想是解答本题的关键.
5、A
【解析】
【分析】
直接根据直线与圆的位置关系即可得出结论.
【详解】
解:∵⊙O的半径为6,直线m上有一动点P,OP=4,
∴直线与⊙O相交.
故选:A.
【点睛】
本题考查的是直线与圆的位置关系,熟知⊙O的半径为r,圆心O到直线l的距离为d,当d=r时,直线l和⊙O相切是解答此题的关键.
6、B
【解析】
【分析】
根据三角形内心的性质得到∠OBC=∠ABC=25°,∠OCB=∠ACB=37°,然后根据三角形内角和计算∠BOC的度数.
【详解】
解:∵点O是△ABC的内心,
∴OB平分∠ABC,OC平分∠ACB,
∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×74°=37°,
∴∠BOC=180°-∠OBC-∠OCB=180°-25°-37°=118°.
故选B.
【点睛】
本题考查了三角形的内切圆与内心:三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.
7、A
【解析】
【分析】
首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为△ABC的外心.
【详解】
解:∵△ABC的外心即是三角形三边垂直平分线的交点,
如图所示:EF与MN的交点O′即为所求的△ABC的外心,
∴△ABC的外心坐标是(﹣2,﹣1).
故选:A
【点睛】
此题考查了三角形外心的知识.注意三角形的外心即是三角形三边垂直平分线的交点.解此题的关键是数形结合思想的应用.
8、D
【解析】
【分析】
由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°-∠ABO=54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.
【详解】
解:∵AB为⊙O的切线,
∴∠OAB=90°,
∵∠ABO=36°,
∴∠AOB=90°﹣∠ABO=54°,
∵OA=OD,
∴∠ADC=∠OAD,
∵∠AOB=∠ADC+∠OAD,
∴∠ADC=∠AOB=27°;
故选:D.
【点睛】
本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.
9、B
【解析】
【分析】
连结CO,根据切线性质与相切于点,得出OC⊥BC,根据直角三角形两锐角互余∠COB=90°-∠B=90°-40°=50°,然后利用圆周角定理即可.
【详解】
解:连结CO,
∵与相切于点,
∴OC⊥BC,
∴∠COB+∠B=90°,
∵,
∴∠COB=90°-∠B=90°-40°=50°,
∴.
故选B.
【点睛】
本题考查圆的切线性质,直角三角形两锐角互余性质,圆周角定理,掌握圆的切线性质,直角三角形两锐角互余性质,圆周角定理是解题关键.
10、A
【解析】
【分析】
连接OA,DE,利用切线的性质和角之间的关系解答即可.
【详解】
解:连接OA,DE,如图,
∵AC是的切线,OA是的半径,
∴OAAC
∠OAC=90°
∠ADE=36°
AOE=2∠ADE=72°
∠C=90°-∠AOE=90°-72°=18°
故选:A.
【点睛】
本题考查了圆周角定理,切线的性质,能求出∠OAC和∠AOC是解题的关键.
二、填空题
1、点P在圆内
【解析】
【分析】
要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系,设点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.
【详解】
解:∵点P到圆心的距离OP=8cm,小于⊙O的半径10cm,
∴点P在圆内.
故答案为:点P在圆内.
【点睛】
本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.
2、圆内
【解析】
【分析】
根据点与圆的位置关系进行解答即可得.
【详解】
解:∵点到圆心的距离d=4
相关试卷
这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试优秀复习练习题,共32页。试卷主要包含了下列四个命题中,真命题是等内容,欢迎下载使用。
这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试精品一课一练,共28页。试卷主要包含了如图,A,已知M等内容,欢迎下载使用。
这是一份冀教版第29章 直线与圆的位置关系综合与测试精品课堂检测,共34页。试卷主要包含了在平面直角坐标系中,以点,在中,,,给出条件等内容,欢迎下载使用。