![2021-2022学年最新冀教版九年级数学下册第三十章二次函数单元测试试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12734603/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新冀教版九年级数学下册第三十章二次函数单元测试试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12734603/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新冀教版九年级数学下册第三十章二次函数单元测试试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12734603/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版九年级下册第30章 二次函数综合与测试精品单元测试测试题
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试精品单元测试测试题,共32页。
九年级数学下册第三十章二次函数单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、抛物线的对称轴是( )
A.直线 B.直线 C.直线 D.直线
2、如图,二次函数的图象经过点,其对称轴为直线,有下列结论:①;②;③;④;⑤若,是抛物线上两点,且,则实数的取值范围是.其中正确结论是( )
A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤
3、如图,在矩形ABCD中,,,动点P沿折线运动到点B,同时动点Q沿折线运动到点C,点P,Q在矩形边上的运动速度为每秒1个单位长度,点P,Q在矩形对角线上的运动速度为每秒2个单位长度.设运动时间为t秒,的面积为S,则下列图象能大致反映S与t之间函数关系的是( )
A. B.
C. D.
4、抛物线y=x2+4x+5的顶点坐标是( )
A.(2,5) B.(2,1) C.(﹣2,5) D.(﹣2,1)
5、已知二次项系数等于1的一个二次函数,其图象与x轴交于,两点,且过,两点.若,则ab的取值范围为( )
A. B. C. D.
6、二次函数的图像如图所示,那么点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7、下列函数中,随的增大而减小的函数是( )
A. B. C. D.
8、一次函数与二次函数在同一平面直角坐标系中的图象可能是( )
A. B.
C. D.
9、已知二次函数y=ax2-2ax-1(a是常数,a≠0),则下列命题中正确的是( )
A.若a=1,函数图象经过点(-1,1) B.若a=-2,函数图象与x轴交于两点
C.若a<0,函数图象的顶点在x轴下方 D.若a>0且x≥1,则y随x增大而减小
10、如图,若二次函敞的图象过点,且与x轴交点横坐标分别为,,其中,.得出结论:①;②;③;④.上述结论正确的有( )个.
A.1 B.2 C.3 D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、对于二次函数与,其自变量与函数值的两组对应值如下表所示,根据二次函数图象的相关性质可知______,______
x
﹣1
c
c
d
2、已知点A(x1,y1)、B(x2,y2)为函数y=﹣2(x﹣1)2+3的图象上的两点,若x1<x2<0,则y1_____y2(填“>”、“=”或“<”),
3、二次函数的图像如图所示,对称轴为直线,根据图中信息可求得该二次函数的解析式为______.
4、二次函数的图像上横坐标与纵坐标相等的点的坐标为__________.
5、最大值与最小值之和为_________.
三、解答题(5小题,每小题10分,共计50分)
1、已知,如图,直线分别与轴、轴交于点、,抛物线经过点和点,其对称轴与直线交于点.
(1)求二次函数的表达式;
(2)若抛物线(其中)与抛物线的对称轴交于点.与直线交于点,过点作轴交抛物线的对称轴左侧部分于点.
①若点和点重合,求的值;
②若点在点的下方,求、的长(用含有的代数式表示);
③在②的条件下,设的长度为个单位,的长度为个单位,若.直接写出的范围.
2、如图,抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A、点B、点C的坐标;
(2)求直线BD的解析式;
(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;
(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.
3、二次函数(、、是常数,)的自变量和函数值部分对应值如下表:
…
-3
-2
-1
0
1
…
…
8
5
4
5
…
根据以上列表,回答下列问题:
(1)直接写出、的值;
(2)求此二次函数的解析式.
4、已知抛物线经过,且顶点在y轴上.
(1)求抛物线解析式;
(2)直线与抛物线交于A,B两点.
①点P在抛物线上,当,且△ABP为等腰直角三角形时,求c的值;
②设直线交x轴于点,线段AB的垂直平分线交y轴于点N,当,时,求点N纵坐标n的取值范围.
5、图中是抛物线形拱桥,P处有一照明灯,水面OA宽4m.以O为原点,OA所在直线为x轴建立直角坐标系,若点P的坐标为.
(1)求拱桥所在抛物线的函数表达式;
(2)因降暴雨水位上升1m,此时水面宽为多少?(结果保留根号)
-参考答案-
一、单选题
1、C
【解析】
【分析】
抛物线的对称轴为:,根据公式直接计算即可得.
【详解】
解:,
其中:,,,
,
故选:C.
【点睛】
本题考查的是抛物线的对称轴,掌握抛物线的对称轴的公式是解本题的关键,注意对称轴是直线.
2、C
【解析】
【分析】
根据开口方向,对称轴,以及与轴负半轴的交点位置判断的符号即可判断①,根据二次函数图象的对称性可知时的函数值与的函数值相等,进而可得,即可判断②,根据对称轴为以及顶点坐标公式即可判断③,根据二次函数图象与轴有两个交点,则,即可判断④,根据对称性可得时的函数值与时的函数值相等,进而根据抛物线的开口方向以及,即可判断,根据顶点位置的函数值最小,进而即可判断⑤
【详解】
解:∵抛物线的开口朝上,则,对称轴,可得,根据抛物线与轴交于负半轴,则
∴
故①正确;
∵二次函数的图象经过点,
则当时,
对称轴为直线,则时的函数值与的函数值相等,
时,
即
故②不正确
对称轴为直线,
∴,即
故③正确;
∵二次函数图象与轴有两个交点,则
即
故④错误;
对称轴为直线,则时的函数值与的函数值相等,
,是抛物线上两点,且,抛物线开口向上,
故⑤正确
故正确的是①③⑤
故选C
【点睛】
本题考查了二次函数图象的性质以及与各系数之间的关系,二次函数与一元一次不等式,根据图象判断方程的根的情况,二次函数的对称性,掌握二次根式图象的性质是解题的关键.
3、D
【解析】
【分析】
分别求出点P在AD,BD上,利用三角形面积公式构建关系式,可得结论.
【详解】
解:∵四边形ABCD是矩形,
∴AD=BC=4,∠A=∠C=90°,AD∥BC,
∴∠ADB=∠DBC=60°,
∴∠ABD=∠CDB=30°,
∴BD=2AD=8,
当点P在AD上时,PE⊥BQ
S△PBQ =·BQ·PE
=•(8-2t)•(4-t)•sin60°
=(4-t)2(0<t<4),
当点P在线段BD上时,QE’⊥BP
S△PBQ=·BP·QE’
=[12-2(t-4)]•(t-)sin60°
=-t2+t-16(4<t≤8),
观察图象可知,选项D满足条件,
故选:D.
【点睛】
本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.
4、D
【解析】
【分析】
利用顶点公式(﹣,),进行解题.
【详解】
解:∵抛物线y=x2+4x+5
∴x=﹣=﹣=﹣2,y==1
∴顶点为(﹣2,1)
故选:D.
【点睛】
此题主要考查二次函数的顶点坐标,解题的关键是熟知二次函数的顶点公式为(﹣,).
5、D
【解析】
【分析】
由题意可设抛物线为y=(x-m)(x-n),则,再利用二次函数的性质可得答案.
【详解】
解:由已知二次项系数等于1的一个二次函数,
其图象与x轴交于两点(m,0),(n,0),
所以可设交点式y=(x-m)(x-n),
分别代入,,
∴
∵0<m<n<3,
∴0<≤4 ,0<≤4 ,
∵m<n,
∴ab不能取16 ,
∴0<ab<16 ,
故选D
【点睛】
本题考查的是二次函数的图象与性质,根据二次函数的性质得到是解本题的关键.
6、C
【解析】
【分析】
根据对称轴的位置、开口方向、与y轴的交点的位置即可判断出a、b、c的符号,进而求出的符号.
【详解】
由函数图像可得:
∵抛物线开口向上,
∴a>0,
又∵对称轴在y轴右侧,
∴,
∴b
相关试卷
这是一份冀教版九年级下册第30章 二次函数综合与测试优秀当堂达标检测题,共27页。
这是一份2021学年第30章 二次函数综合与测试优秀同步练习题,共24页。试卷主要包含了抛物线y=﹣2等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试课后复习题,共28页。试卷主要包含了一次函数与二次函数的图象交点,抛物线y=42+3的顶点坐标是,抛物线的对称轴是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)