年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新冀教版九年级数学下册第三十章二次函数专题攻克试题(含答案及详细解析)

    2021-2022学年最新冀教版九年级数学下册第三十章二次函数专题攻克试题(含答案及详细解析)第1页
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数专题攻克试题(含答案及详细解析)第2页
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数专题攻克试题(含答案及详细解析)第3页
    还剩25页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第30章 二次函数综合与测试课后复习题

    展开

    这是一份冀教版九年级下册第30章 二次函数综合与测试课后复习题,共28页。试卷主要包含了一次函数与二次函数的图象交点,抛物线y=42+3的顶点坐标是,抛物线的对称轴是等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、对于抛物线下列说法正确的是(       A.开口向下 B.其最大值为-2 C.顶点坐标 D.与x轴有交点2、若点A(-1,y1),B(0,y2),C(1,y3)都在二次函数y=2x2x-1的图象上,则y1y2y3的大小关系是(       A.y1y2><y3 B.y2y1y3 C.y3y1y2 D.y3y2y13、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为(  )A.4 B.10米 C.4 D.12米4、二次函数yax2+bx+c的图像全部在x轴的上方,下列判断中正确的是(       A.a<0,c<0 B.a<0,c>0 C.a>0,c<0 D.a>0,c>05、一次函数与二次函数的图象交点(  )A.只有一个 B.恰好有两个C.可以有一个,也可以有两个 D.无交点6、抛物线y=4(2x﹣3)2+3的顶点坐标是(  )A.(,3) B.(4,3) C.(3,3) D.(﹣3,3)7、已知二次函数,若时,函数的最大值与最小值的差为4,则a的值为(       A.1 B.-1 C. D.无法确定8、抛物线的对称轴是(     A.直线 B.直线 C.直线 D.直线9、已知二次函数的图象经过,则b的值为(       A.2 B. C.4 D.10、二次函数yax2﹣4axca>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是(       A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<0第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,抛物线轴交于点,若对称轴为直线,点的坐标为(-3,0),则不等式的解集为______.2、抛物线y=(x﹣1)2+3的顶点坐标为___.3、如果(2,y1)(3,y2)是抛物线y=(x+1)2上两点,那么y1_____y2.(填“>”或“<”)4、抛物线的对称轴是直线,则它的顶点坐标为______5、已知二次函数,当时,函数的值是_________.三、解答题(5小题,每小题10分,共计50分)1、如图,因疫情防控需要,某校在足够大的空地利用旧墙MN和隔离带围成一个矩形隔离区ABCD,墙长为a米,ADMN,矩形隔离区的一边靠墙,其它三边一共用隔离带200米.(1)a=30,所围成的矩形隔离区的面积为1800平方米,求所利用旧墙AD的长;(2)若a=150.求矩形隔离区ABCD面积的最大值.2、已知直线y1kx+1(k>0)与抛物线y2x2(1)当﹣4≤x≤3时,函数y1y2的最大值相等,求k的值;(2)如图①,直线y1kx+1与抛物线y2x2交于AB两点,与y轴交于F点,点C与点F关于原点对称,求证:SACFSBCFACBC(3)将抛物线y2x2先向上平移1个单位,再沿直线y1kx+1的方向移动,使向右平行移动的距离为t个单位,如图②所示,直线y1kx+1分别交x轴,y轴于EF两点,交新抛物线于MN两点,D是新抛物线与y轴的交点,当△OEF∽△DNF时,试探究tk的关系.3、如图,抛物线经过点(1)求抛物线的解析式;(2)若点为第三象限内抛物线上的一点,设的面积为,求的最大值并求出此时点的坐标;(3)设抛物线的顶点为,在轴上是否存在点,使得是直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.4、如图,在平面直角坐标系中,已知点的坐标为,且,抛物线)图象经过三点.(1)求抛物线的解析式;(2)是抛物线对称轴上的一点,当的值最小时,求点坐标;(3)若点是直线下方的抛物线上的一个动点,作于点,当的值最大时,求此时点的坐标及的最大值.5、如图,在平面直角坐标系中,抛物线y=﹣x2bxc经过A(﹣3,0)、B(1,0)两点,与y轴交于点C,连接BC,点P是位于x轴上方抛物线上的一个动点,过PPEx轴,垂足为点E(1)求抛物线的函数表达式;(2)是否存在点P,使得以APE为顶点的三角形与△BOC相似?若存在,求出点P的坐标,说明理由;(3)是否存在点P,使得四边形ABCP的面积最大?若存在,请求出点P的坐标,请说明理由. -参考答案-一、单选题1、D【解析】【分析】根据二次函数的性质对各选项分析判断即可得解.【详解】解:由y=(x-1)2-2,可知,a=1>0,则抛物线的开口向上,∴A选项不正确;由抛物线,可知其最小值为-2,∴B选项不正确;由抛物线,可知其顶点坐标,∴C选项不正确;在抛物线中,=b²-4ac=8>0,与与x轴有交点,∴D选项正确;故选:D.【点睛】本题考查了二次函数的性质,掌握开口方向,对称轴、顶点坐标以及与x轴的交点坐标的求法是解决问题的关键.2、B【解析】【分析】由题意可知函数图象的对称轴、增减性;根据对称将A转化到对称轴的右侧,得到的坐标表示,然后比较三点横坐标的大小,进而判断三点纵坐标的大小即可.【详解】解:由知该函数图象开口向上,对称轴是直线,在对称轴的右侧,yx的增加而增大∴点A对称的点的坐标为故选B.【点睛】本题考查了二次函数的图象与性质.解题的关键在于掌握该函数图象与性质.3、B【解析】【分析】O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为yax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣ x²,再将y=﹣1代入解析式,求出CD点的横坐标即可求CD的长.【详解】解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为yax2O点到水面AB的距离为4米,AB点的纵坐标为﹣4,∵水面AB宽为20米,A(﹣10,﹣4),B(10,﹣4),A代入yax2﹣4=100aa=﹣y=﹣x2∵水位上升3米就达到警戒水位CDC点的纵坐标为﹣1,∴﹣1=﹣x2x=±5,CD=10,故选:B.【点睛】本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.4、D【解析】【分析】由抛物线全部在轴的上方,即可得出抛物线与轴无交点且,进而即可得出,此题得解.【详解】解:二次函数的图象全部在轴的上方,故选:D.【点睛】本题考查了二次函数的性质,解题的关键是牢记二次函数的性质.5、B【解析】【分析】联立解析式得一元二次方程,利用判根公式判断方程的根,方程根的个数即为图象的交点个数.【详解】解:联立一次函数和二次函数的解析式可得:整理得:有两个不相等的实数根的图象交点有两个故选:B.【点睛】本题考查了一元二次方程的根,图象的交点与方程根的关系.解题的关键在于正确求解6、A【解析】【分析】根据顶点式的顶点坐标为求解即可【详解】解:抛物线的顶点坐标是故选A【点睛】本题考查了二次函数顶点式的顶点坐标为,掌握顶点式求顶点坐标是解题的关键.7、C【解析】【分析】a>0或a<0两种情况讨论,求出y的最大值和最小值,即可求解;【详解】a>0时,∵对称轴为x=x=1时,y有最小值为2,当x=3时,y有最大值为4a+2,∴4a+2-2=4.a=1,a<0时,同理可得y有最大值为2; y有最小值为4a+2,∴2-(4a+2)=4,a=-1,综上,a的值为故选:C【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识,利用分类思想解决问题是本题的关键.8、B【解析】【分析】由抛物线解析式的顶点式即可求得抛物线的对称轴.【详解】抛物线的对称轴是直线故选:B【点睛】本题考查了抛物线的图象与性质,当抛物线的解析式为时,对称轴为直线;当抛物线的解析式为时,对称轴为直线x=h9、C【解析】【分析】由二次函数的图象经过,可得二次函数图象的对称轴为 再结合对称轴方程的公式列方程求解即可.【详解】解: 二次函数的图象经过 二次函数图象的对称轴为: 解得: 故选C【点睛】本题考查的是二次函数的对称轴方程,掌握“利用纵坐标相等的两个点求解对称轴方程”是解本题的关键.10、C【解析】【分析】根据函数表达式得出函数的开口方向和对称轴,从而得到y3y2y4y1,再结合题目一一判断即可.【详解】解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,∵-2<0<2<3<5,y3y2y4y1y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,y2y4<0,则y1y3<0,选项C符合题意,y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,故选:C.【点睛】本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.二、填空题1、【解析】【分析】函数的对称轴为直线,与轴交点,则另一个交点,进而求解.【详解】解:函数的对称轴为直线,与轴交点,则另一个交点观察函数图象知,不等式的解集为:故答案为:【点睛】本题考查了抛物线与轴的交点,主要考查函数图象上点的坐标特征,解题的关键是要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.2、(1,3)【解析】【分析】根据顶点式判断顶点即可.【详解】解:∵抛物线解析式为y=(x﹣1)2+3∴顶点坐标是(1,3).故答案为:(1,3)【点睛】本题考查了二次函数解析式---顶点式,明确的顶点坐标为(hk)是解答本题的关键.3、<【解析】【分析】根据二次函数的性质得到抛物线y=(x+1)2的开口向上,对称轴为直线x=﹣1,则在对称轴右侧,yx的增大而增大.【详解】解:∵y=(x+1)2a=1>0,∴抛物线开口向上,∵抛物线y=(x+1)2对称轴为直线x=﹣1,∵﹣1<2<3,y1y2故答案为<.【点睛】本题考查了的性质,求得对称轴是解题的关键.4、【解析】【分析】根据顶点坐标公式求得横坐标等于2,即可求得的值,进而求得顶点坐标.【详解】抛物线的对称轴是直线即抛物线解析式为时,它的顶点坐标为【点睛】本题考查了二次函数的性质,待定系数法求解析式,求得的值是解题的关键.5、-1【解析】【分析】x的值代入计算即可;【详解】解:当==-1故答案为:-1【点睛】本题考查了二次函数的值,正确计算是解题的关键.三、解答题1、 (1)AD=20米;(2)当x=100时,S最大=5000米2【解析】【分析】(1)设AD=xAB=(200-x)÷2=100-,根据长方形面积公式列方程,解方程,根据墙长得出AD=20米;(2)矩形隔离区ABCD面积用S表示,根据长方形面积公式列出面积函数S=然后配方为S即可.(1)解:设AD=xAB=(200-x)÷2=100-∴根据题意得:整理得解得:a=30,AD=20米;(2)解:矩形隔离区ABCD面积用S表示,S=a=150>100,∴当x=100时,S最大=5000米2【点睛】本题考查长方形面积,列一元二次方程解图形问题应用题,列二次函数解图形问题的最值问题,掌握长方形面积,列一元二次方程解图形问题应用题,列二次函数解图形问题的最值问题是解题关键.2、 (1)(2)证明见解析(3)【解析】【分析】(1)根据函数图象的性质可知,当时,,有,求解即可;(2)如图,分别过点交点分别为,设两点横坐标分别为,由题意知:;有,故可证(3)平移后的二次函数解析式为,与y轴的交点坐标为可知有相同的纵坐标,可得,解得,知点横纵标,在点一次函数与二次函数相交,有相同的纵坐标,可得,进而可得的关系.(1)解:∵∴根据函数图象的性质可知,当时,解得(2)证明:如图,分别过点交点分别为两点横坐标分别为由题意知:(3)解:由题意知,平移后的二次函数解析式为,与y轴的交点坐标为有相同的纵坐标解得故可知点横纵标∵在点一次函数与二次函数相交,有相同的纵坐标解得【点睛】本题考查了一次函数与二次函数的综合,相似三角形等知识.解题的关键在于灵活运用知识求解.3、 (1)(2)当时,有最大值,此时点的坐标为(3)在轴上存在点,能够使得是直角三角形,此时点的坐标为【解析】【分析】(1)已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;(2)过点轴的垂线交于,过点轴的垂线,交于点,先运用待定系数法求出直线的解析式,设点坐标为,根据的解析式表示出点的坐标,再根据就可以表示出的面积,运用顶点式就可以求出结论;(3)分三种情况进行讨论:①以为直角顶点;②以为直角顶点;③以为直角顶点;设点的坐标为,根据勾股定理列出方程,求出的值即可.(1)解:抛物线经过点,解得抛物线的解析式为:(2)如图,过点轴的垂线交于,过点轴的垂线,交于点设直线的解析式为,由题意,得,解得直线的解析式为:点坐标为,则点的坐标为时,有最大值,此时点的坐标为(3)解:在轴上是存在点,能够使得是直角三角形.理由如下:顶点的坐标为设点的坐标为,分三种情况进行讨论:①当为直角顶点时,如图3①,由勾股定理,得解得所以点的坐标为②当为直角顶点时,如图3②,由勾股定理,得解得所以点的坐标为③当为直角顶点时,如图3③,由勾股定理,得解得所以点的坐标为综上可知,在轴上存在点,能够使得是直角三角形,此时点的坐标为【点睛】本题考查了二次函数综合题,涉及到用待定系数法求一次函数、二次函数的解析式,三角形的面积,二次函数的顶点式的运用,勾股定理等知识,解题的关键是运用数形结合、分类讨论及方程思想进行求解.4、 (1)(2)();(3)点P(2,-6),PD最大值为【解析】【分析】(1)根据点B的坐标,得出OB的长,进而根据即可得到OA、OC的长,利用待定系数法求出函数解析式;(2)利用配方法求出抛物线的对称轴,连接AC,交对称轴于一点即为点M,此时的值最小,求出直线AC的解析式,当时求出y的值即可得到点M的坐标;(3)过点PPH平行于y轴,交AC于点H,根据等腰直角三角形的性质求出∠OAC=∠OCA=45°,根据平行线的性质求出∠PHD=∠OCA=45°,设点Px),则点Hxx-4),根据正弦函数定义得到,根据函数的性质得解问题.(1)解:∵点的坐标为OB=1,OA=OC=4,∴点A的坐标为(4,0),点C的坐标为(0,-4),将点A、B、C的坐标代入中,得,解得∴抛物线的解析式为(2)解:∵∴抛物线的对称轴为直线连接AC,交对称轴于一点即为点M,此时的值最小,设直线AC的解析式为,解得∴直线AC的解析式为y=x-4,时,∴点M的坐标为();(3)解:过点PPH平行于y轴,交AC于点HOA=OC∴∠OAC=∠OCA=45°,∴∠PHD=∠OCA=45°,设点Px),则点Hxx-4),PD有最大值,当x=2时,PD最大值为此时点P(2,-6).【点睛】此题考查了待定系数法求抛物线解析式,抛物线的对称轴,化一般式为顶点式,最短路径问题,二次函数的性质,锐角三角函数,正确掌握抛物线的各知识点是解题的关键,这是一道二次函数与一次函数的综合题.5、 (1)y=-x2-2x+3(2)P1(-2,3)或P2()(3)点P的坐标为(-),理由见解析.【解析】【分析】(1)把A(-3,0)、B(1,0)代入y=-x2+bx+c求出bc的值即可求出该函数表达式;(2)设Pm,-m2-2m+3),表示出PEAE的长,分两种情况讨论即可找到P的坐标;(3)连接ACPE于点H,把四边形分成两部分,表示出SABCP=SPAC+SABC即可根据二次函数最值找到P的坐标.(1)A(-3,0)、B(1,0)代入y=-x2+bx+c得:解得:∴抛物线的函数解析式为y=-x2-2x+3;(2)A(-3,0),B(1,0),C(0,3),OC=3,OB=1,∴设Pm,-m2-2m+3),PE=-m2-2m+3,AE=m+3,根据题意得:解得:m1=-2,m2=-3(舍去),∴-m2-2m+3= P1(-2,3),解得:m1m2=−3(舍去), P2(),综上,点P坐标为P1(-2,3)或P2().(3)连接ACPE于点HA(-3,0),C(0,3)得直线AC的表达式为:y=x+3,Pm,-m2-2m+3),则Hmm+3),PH=-m2-3mSPAC(−m2−3m)×3SABCP=SPAC+SABC=m=−时,S最大,此时点P的坐标为(-).【点睛】本题考查待定系数法求解析式,三角形的相似以及面积最值问题,熟练掌握好二次函数相关性质是解题基础,并能分类讨论,数形相结合是解题的关键. 

    相关试卷

    初中数学冀教版九年级下册第30章 二次函数综合与测试优秀巩固练习:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀巩固练习,共28页。试卷主要包含了已知点,,都在函数的图象上,则等内容,欢迎下载使用。

    2020-2021学年第30章 二次函数综合与测试习题:

    这是一份2020-2021学年第30章 二次函数综合与测试习题,共28页。试卷主要包含了抛物线的对称轴是等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试测试题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试测试题,共33页。试卷主要包含了二次函数的最大值是,抛物线的顶点坐标为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map