开学活动
搜索
    上传资料 赚现金

    2021-2022学年冀教版九年级数学下册第三十章二次函数章节练习试卷

    2021-2022学年冀教版九年级数学下册第三十章二次函数章节练习试卷第1页
    2021-2022学年冀教版九年级数学下册第三十章二次函数章节练习试卷第2页
    2021-2022学年冀教版九年级数学下册第三十章二次函数章节练习试卷第3页
    还剩28页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第30章 二次函数综合与测试精品巩固练习

    展开

    这是一份数学九年级下册第30章 二次函数综合与测试精品巩固练习,共31页。试卷主要包含了同一直角坐标系中,函数和等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数章节练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、抛物线的对称轴是( )
    A.直线 B.直线 C.直线 D.直线
    2、抛物线,,的图象开口最大的是( )
    A. B. C. D.无法确定
    3、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )

    A.米 B.10米 C.米 D.12米
    4、若函数,则当函数y=15时,自变量的值是( )
    A. B.5 C.或5 D.5或
    5、同一直角坐标系中,函数和(是常数,且)的图象可能是( )
    A. B.
    C. D.
    6、如图,二次函数的图象与x轴交于点A、B两点,与y轴交于点C;对称轴为直线,点B的坐标为,则下列结论:①;②;③;④,其中正确的结论有( )个.

    A.1个 B.2个 C.3个 D.4个
    7、若点,都在二次函数的图象上,且,则的取值范围是( )
    A. B. C. D.
    8、若关于的一元二次方程的两根分别为,,则二次函数的对称轴为直线( )
    A. B. C. D.
    9、将二次函数y=2x2的图像先向左平移2个单位,再向上平移3个单位,得到的函数图像的表达式为(  )
    A.y=2(x+2)2+3 B.y=2(x-2)2+3 C.y=2(x+2)2-3 D.y=2(x-2)2-3
    10、在抛物线的图象上有三个点,,,则、、的大小关系为( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在平面直角坐标系中,设点P是抛物线的顶点,则点P到直线的距离的最大值为________.
    2、将二次函数y=﹣x2+2图象向下平移3个单位,得到的函数图象顶点坐标为_____.
    3、如图,在平面直角坐标系中,Q是直线上的一个动点,将Q绕点P(0,1)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为_________.

    4、如图,在平面直角坐标系中,抛物线与轴交于,两点(点在点左侧),直线经过点;当时,直线分别与轴,抛物线交于,两点;当时,直线分别与轴,抛物线交于,两点;……;当(为正整数)时,直线分别与轴,抛物线交于,两点,则线段长为______.(用含的代数式表示)

    5、将抛物线向右平移4个单位,所得到的抛物线的函数解析式是________.
    三、解答题(5小题,每小题10分,共计50分)
    1、抛物线与x轴交和点B,交y轴于点C,对称轴为直线.

    (1)求抛物线的解析式;
    (2)如图,若点D为线段BC下方抛物线上一点,过点D作轴于点E,再过点E作于点F,请求出的最大值.
    2、已知如图,二次函数的图像与x轴相交于点A、B两点,与y轴相交于点C,连接AC、BC,,抛物线的顶点为D.

    (1)求抛物线的解析式;
    (2)抛物线的对称轴上有一动点E,当取得最小值时,E点坐标为________;此时AE与BC的位置关系是________,________;
    (3)抛物线对称轴右侧的函数图像上是否存在点M,满足,若存在求M点的横坐标;若不存在,请说明理由;
    (4)若抛物线上一动点Q,当时,直接写出Q点坐标________.
    3、如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,平行于x的直线与抛物线交于点A,B,若△AMB为等腰直角三角形,则抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的“准碗形”,线段AB称为碗宽,点M到线段AB的距离称为碗高.

    (1)抛物线y=x2对应的碗宽为 ;
    (2)抛物线y=ax2(a>0)对应的碗宽为 ;抛物线y=a(x﹣2)2+3(a>0)对应的碗高为 ;
    (3)已知抛物线y=ax2﹣4ax﹣(a>0)对应的碗高为3.
    ①求碗顶M的坐标;
    ②如图2,将“准碗形AMB”绕点M顺时针旋转30°得到“准碗形”.过点作x轴的平行线交准碗形于点C,点P是线段上的动点,过点P作y轴的平行线交准碗形A'MB'于点Q.请直接写出线段PQ长度的最大值.
    4、如图,要用篱笆(虚线部分)围成一个矩形苗圃ABCD,其中两边靠的墙足够长,中间用平行于AB的篱笆EF隔开,已知篱笆的总长度为18米,设矩形苗圃ABCD的一边AB的长为x(m),矩形苗圃ABCD面积为y().

    (1)求y与x的函数关系式;
    (2)求所围矩形苗圃ABCD的面积最大值;
    5、某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间t(天)之间的函数关系为p=,且t为整数,日销售量y(千克)与时间t(天)之间的函数关系如图所示.

    (1)求日销售量y与时间t的函数表达式.
    (2)哪一天的日销售利润最大?最大利润是多少?

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    由抛物线解析式的顶点式即可求得抛物线的对称轴.
    【详解】
    抛物线的对称轴是直线,
    故选:B.
    【点睛】
    本题考查了抛物线的图象与性质,当抛物线的解析式为时,对称轴为直线;当抛物线的解析式为时,对称轴为直线x=h.
    2、A
    【解析】
    【分析】
    先令x=1,求出函数值,然后再比较二次项系数的绝对值的大小即可解答.
    【详解】
    解:当x=1时,三条抛物线的对应点是(1,)(1,-3),(1,1),
    ∵||<|1|<|-3|,
    ∴抛物线开口最大.
    故选A.
    【点睛】
    本题主要考查了二次函数图象的性质,掌握二次函数解析式的二次项系数的绝对值越小,函数图象的开口越大.
    3、B
    【解析】
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】

    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为-4,
    ∵水面AB宽为20米,
    ∴A(-10,-4),B(10,-4),
    将A代入y=ax2,
    -4=100a,
    ∴,
    ∴,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为-1,

    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
    4、D
    【解析】
    【分析】
    根据题意,利用分类讨论的方法可以求得当函数y=15时,自变量x的值.
    【详解】
    解:当x<3时,
    令2x2-3=15,
    解得x=-3;
    当x≥3时,
    令3x=15,
    解得x=5;
    由上可得,x的值是-3或5,
    故选:D.
    【点睛】
    本题考查了二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.
    5、D
    【解析】
    【分析】
    根据一次函数,二次函数的图象与性质逐一分析两个解析式中的的符号,再判断即可.
    【详解】
    解:选项A:由的图象可得:
    由的图象可得:则 故A不符合题意;
    选项B:由的图象可得:
    由的图象可得:则
    而抛物线的对称轴为: 则 故B不符合题意;
    选项C:由的图象可得:
    由的图象可得:则 故C不符合题意;
    选项D:由的图象可得:
    由的图象可得:则
    而抛物线的对称轴为: 则 故D符合题意;
    故选D
    【点睛】
    本题考查的是一次函数与二次函数的图象共存问题,掌握“一次函数与二次函数的图象与性质”是解本题的关键.
    6、D
    【解析】
    【分析】
    根据二次函数的对称性,以及参数a、b、c的意义即可求出答案.
    【详解】
    解:∵抛物线的对称轴为x=-1,
    所以B(1,0)关于直线x=-1的对称点为A(-3,0),
    ∴AB=1-(-3)=4,故①正确;
    由图象可知:抛物线与x轴有两个交点,
    ∴Δ=b2-4ac>0,故②正确;
    由图象可知:抛物线开口向上,
    ∴a>0,
    由对称轴可知:−0,故③正确;
    当x=-1时,y=a-b+c

    相关试卷

    数学九年级下册30.1 二次函数课时训练:

    这是一份数学九年级下册30.1 二次函数课时训练,共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数30.1 二次函数一课一练:

    这是一份冀教版九年级下册第30章 二次函数30.1 二次函数一课一练,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试精品同步训练题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试精品同步训练题,共32页。试卷主要包含了对于抛物线下列说法正确的是,下列函数中,二次函数是,二次函数图像的顶点坐标是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map