|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年冀教版九年级数学下册第三十章二次函数章节练习试题(无超纲)
    立即下载
    加入资料篮
    2021-2022学年冀教版九年级数学下册第三十章二次函数章节练习试题(无超纲)01
    2021-2022学年冀教版九年级数学下册第三十章二次函数章节练习试题(无超纲)02
    2021-2022学年冀教版九年级数学下册第三十章二次函数章节练习试题(无超纲)03
    还剩25页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第30章 二次函数综合与测试优秀巩固练习

    展开
    这是一份冀教版九年级下册第30章 二次函数综合与测试优秀巩固练习,共28页。试卷主要包含了二次函数y=ax2﹣4ax+c,下列函数中,二次函数是等内容,欢迎下载使用。

    九年级数学下册第三十章二次函数章节练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知二次函数y=ax2+bx+c的图象如图所示,则(  )

    A.b>0,c>0,Δ=0 B.b<0,c>0,Δ=0
    C.b<0,c<0,Δ=0 D.b>0,c>0,Δ>0
    2、如图,抛物线y=ax2+bx+c的顶点为P(﹣2,2),且与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),此时抛物线与y轴交于点A′,则AA′的长度为(  )

    A.2 B.3 C.3 D.D3
    3、已知二次函数,当时,随的增大而减小,则的取值范围是( )
    A. B. C. D.
    4、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=﹣bx+c的图象不经过(  )

    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    5、二次函数y=ax2﹣4ax+c(a>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是( )
    A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0
    C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<0
    6、下列函数中,二次函数是( )
    A.y=﹣3x+5 B.y=x(4x﹣3)
    C.y=2(x+4)2﹣2x2 D.y=
    7、二次函数的自变量与函数值的部分对应值如下表:


    -3
    -2
    -1
    0
    1



    -11
    -3
    1
    1
    -3

    对于下列结论:①二次函数的图像开口向下;②当时,随的增大而减小;③二次函数的最大值是1;④若,是二次函数图像与轴交点的横坐标,则,其中,正确的是( )
    A.①② B.③④ C.①③ D.①②④
    8、已知二次函数的图象如图所示,对称轴为直线,下列结论中正确的是( )

    A. B. C. D.
    9、在同一坐标系内,函数y=kx2和y=kx﹣2(k≠0)的图象大致如图(  )
    A. B.
    C. D.
    10、下列函数中,随的增大而减小的函数是( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、将抛物线向右平移4个单位,所得到的抛物线的函数解析式是________.
    2、如图,抛物线与轴交于点,,若对称轴为直线,点的坐标为(-3,0),则不等式的解集为______.

    3、最大值与最小值之和为_________.
    4、已知二次函数,当时,函数的值是_________.
    5、将抛物线y=x2向左平移3个单位所得图象的函数表达式为___.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知函数(为常数).
    (1)若图象经过点,判断图象经过点吗?请说明理由;
    (2)设该函数图象的顶点坐标为,当的值变化时,求与的关系式;
    (3)若该函数图象不经过第三象限,当时,函数的最大值与最小值之差为16,求的值.
    2、如图,已知抛物线与轴交于、两点,与轴交于点.

    (1)求抛物线的解析式;
    (2)点是第一象限内抛物线上的一个动点(与点、不重合),过点作轴于点,交于点,过点作,垂足为.求线段的最大值;
    (3)已知为抛物线对称轴上一动点,若是直角三角形,求出点的坐标.
    3、小君根据学习经验对函数y=|ax2+bx+c|进行了探究.
    (1)写出该函数自变量的取值范围    ;
    (2)下列表示y与x的几组对应值.
    x

    ﹣1

    0

    1

    2

    3

    4

    5

    y

    5

    0

    3

    4

    3

    m

    5

    则m=    ;
    (3)如图,在平面直角坐标系xOy中,描出以上对各对对应值为坐标的点.根据描出的点,画出该函数的图象;

    (4)请根据图象,写出:
    ①当0≤x≤4时,y的最大值是    ;
    ②当z<x<z+1时,y随x的增大而增大,则z的取值范围是    .
    4、已知二次函数y=ax2+bx(a≠0)的图象经过点A(2,4),B(4,0).

    (1)求这个二次函数的表达式.
    (2)将x轴上的点P先向上平移3n(n>0)个单位得点P1,再向左平移2n个单位得点P2,若点P1,P2均在该二次函数图象上,求n的值.
    5、如图,抛物线y=ax2+bx﹣3经过A、B、C三点,点A(﹣3,0)、C(1,0),点B在y轴上.点P是直线AB下方的抛物线上一动点(不与A、B重合).

    (1)求此抛物线的解析式;
    (2)过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求出此时P点的坐标;
    (3)点Q是抛物线对称轴上一动点,是否存在点Q,使以点A、B、Q为顶点的三角形为直角三角形?若存在,请求出点Q坐标;若不存在,请说明理由.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    根据抛物线的开口方向和对称轴的位置确定b的符号,由抛物线与x轴的交点个数确定△的符号,由抛物线与y轴的交点位置确定c的符号,即可得出答案.
    【详解】
    解:∵抛物线的开口向上,
    ∴a>0,
    ∵抛物线的对称轴在y轴的右侧,
    ∴>0,
    ∴b<0,
    ∵抛物线与y轴的交点在x轴的上方,
    ∴c>0,
    ∵抛物线与x轴有一个交点,
    ∴Δ=0,
    故选:B.
    【点睛】
    本题主要考查二次函数的图象与性质,关键是要牢记图象与系数的关系,牢记抛物线的对称轴公式.
    2、B
    【解析】
    【分析】
    先运用待定系数法求出原抛物线的解析式,再根据平移不改变二次项系数,得出平移后的抛物线解析式,求出A′的坐标,进而得出AA′的长度.
    【详解】
    ∵抛物线y=ax2+bx+c的顶点为P(﹣2,2),
    ∴y=a(x+2)2+2,
    ∵与y轴交于点A(0,3),
    ∴3=a(0+2)2+2,解得a=
    ∴原抛物线的解析式为:y=(x+2)2+2,
    ∵平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),
    ∴平移后的抛物线为y=(x﹣1)2﹣1,
    ∴当x=0时,y=,
    ∴A′的坐标为(0,),
    ∴AA′的长度为:3﹣()=3.
    故选:B.
    【点睛】
    本题考查了平移、二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解.
    3、D
    【解析】
    【分析】
    先求出对称轴x=,再由已知可得 b≥1,即可求b的范围.
    【详解】
    解:∵,
    ∴对称轴为直线x=b,开口向下,
    在对称轴右侧,y随x的增大而减小,
    ∵当x>1时,y随x的增大而减小,
    ∴1不在对称轴左侧,
    ∴b≤1,
    故选:D.
    【点睛】
    本题考查二次函数的图象与系数的关系,熟练掌握二次函数的图象及性质,充分理解对称轴与函数增减性之间的关系是解题的关键.
    4、D
    【解析】
    【分析】
    根据二次函数图象的开口方向、对称轴判断出a、b的正负情况,再由一次函数的性质解答.
    【详解】
    解:由势力的线与y轴正半轴相交可知c>0,
    对称轴x=-<0,得b<0.

    所以一次函数y=﹣bx+c的图象经过第一、二、三象限,不经过第四象限.
    故选:D.
    【点睛】
    本题考查二次函数图象和一次函数图象的性质,要掌握它们的性质才能灵活解题.
    5、C
    【解析】
    【分析】
    根据函数表达式得出函数的开口方向和对称轴,从而得到y3<y2<y4<y1,再结合题目一一判断即可.
    【详解】
    解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,
    ∵-2<0<2<3<5,
    ∴y3<y2<y4<y1,
    若y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,
    若y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,
    若y2y4<0,则y1y3<0,选项C符合题意,
    若y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,
    故选:C.
    【点睛】
    本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.
    6、B
    【解析】
    【分析】
    根据二次函数的定义逐个判断即可.
    【详解】
    解:A.函数是一次函数,不是二次函数,故本选项不符合题意;
    B.是二次函数,故本选项符合题意;
    C.是一次函数,不是二次函数,故本选项不符合题意;
    D.不是二次函数,故本选项不符合题意;
    故选:B.
    【点睛】
    本题考查了二次函数的定义,解题的关键是掌握:形如、、为常数,的函数,叫二次函数.
    7、A
    【解析】
    【分析】
    根据待定系数法确定函数解析式,再根据函数的图象与性质求解即可.
    【详解】
    解:把(-1,1),(1,-3),(-2,-3)代入,得

    解得,
    ∴二次函数式为:

    ∴二次函数的图像开口向下,故①正确;

    ∴对称轴为直线
    ∴当时,随的增大而减小,故②正确;
    当时,二次函数的最大值是,故③错误;
    若,是二次函数图像与轴交点的横坐标,则,故④错误
    ∴正确的是①②
    故答案为①②
    【点睛】
    本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.
    8、D
    【解析】
    【分析】
    由抛物线的开口方向判断与0的关系,由抛物线与轴的交点判断与0的关系,然后根据对称轴确定的符号,进而对所得结论进行判断.
    【详解】
    解:图象开口向上,与轴交于负半轴,对称轴在轴右侧,
    得到:,,,,
    A、,,,得,故选项错误,不符合题意;
    B、对称轴为直线,得,解得,故选项错误,不符合题意;
    C、当时,得,整理得:,故选项错误,不符合题意;
    D、根据图象知,抛物线与轴的交点横坐标,是一正一负,即,根据,整理得:,根据对称性可得出,则,故选项正确,符合题意;
    故选:D.
    【点睛】
    本题主要考查二次函数图象与二次函数系数之间的关系,解题的关键是掌握二次函数系数符号由抛物线开口方向、对称轴、抛物线与轴的交点、抛物线与轴交点的个数确定.
    9、B
    【解析】
    【分析】
    分别利用函数解析式分析图象得出答案.
    【详解】
    解:A、二次函数开口向下,k<0;一次函数图象经过第一、三象限,k>0,故此选项错误;
    B、两函数图象符合题意;
    C、二次函数开口向上,k>0;一次函数图象经过第二、四象限,k<0,故此选项错误;
    D、一次函数解析式为:y=kx-2,图象应该与y轴交在负半轴上,故此选项错误.
    故选:B.
    【点睛】
    此题主要考查了二次函数的图象以及一次函数的图象,正确得出k的符号是解题关键.
    10、B
    【解析】
    【分析】
    根据一次函数,反比例函数,二次函数,正比例函数的性质逐项分析即可.
    【详解】
    A. ,,随的增大而增大,故A选项不符合题意.
    B. ,, ,的图像位于第三象限,随的增大而减小,故B选项符合题意;
    C. ,,对称轴为轴,在对称轴的左边,随的增大而增大,在对称轴的右边,随的增大而减小,故C选项不符合题意;
    D. ,,随的增大而增大,故D选项不符合题意;
    故选B.
    【点睛】
    本题考查了一次函数,反比例函数,二次函数,正比例函数的性质,掌握以上性质是解题的关键.
    二、填空题
    1、y=(x-4)2
    【解析】
    【分析】
    先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.
    【详解】
    解:抛物线y=x2的顶点坐标为(0,0),
    向右平移4个单位后的图象的顶点坐标为(4,0),
    所以,所得图象的解析式为y=(x-4)2,
    故答案为:y=(x-4)2.
    【点睛】
    本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.
    2、
    【解析】
    【分析】
    函数的对称轴为直线,与轴交点,则另一个交点,进而求解.
    【详解】
    解:函数的对称轴为直线,与轴交点,则另一个交点,
    观察函数图象知,不等式的解集为:,
    故答案为:.
    【点睛】
    本题考查了抛物线与轴的交点,主要考查函数图象上点的坐标特征,解题的关键是要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.
    3、##
    【解析】
    【分析】
    将已知式子化成,分和两种情况,再利用一元二次方程根的判别式可得一个关于的不等式,然后利用二次函数的性质求出的取值范围,从而可得的最大值与最小值,由此即可得出答案.
    【详解】
    解:由得:,
    ①当时,;
    ②当时,则关于的方程根的判别式大于或等于0,
    即,
    整理得:,
    解方程得:,
    则对于二次函数,当时,的取值范围为,且,
    综上,的取值范围为,
    所以的最大值为3,最小值为,
    所以的最大值与最小值之和为,
    故答案为:.
    【点睛】
    本题考查了一元二次方程根的判别式、二次函数的性质等知识,将求最值问题转化为一元二次方程问题是解题关键.
    4、-1
    【解析】
    【分析】
    将x的值代入计算即可;
    【详解】
    解:当时
    ==-1
    故答案为:-1
    【点睛】
    本题考查了二次函数的值,正确计算是解题的关键.
    5、y=(x+3)2
    【解析】
    【分析】
    根据“上加下减,左加右减”的原则进行解答即可.
    【详解】
    解:由“左加右减”的原则可知,将抛物线y=x2向左平移3个单位所得直线的解析式为:y=(x+3)2.
    故答案是:y=(x+3)2.
    【点睛】
    本题考查了二次函数的图象与几何变换,正确理解平移法则是关键.
    三、解答题
    1、 (1)经过,理由见解析
    (2)n=﹣m2﹣6m.
    (3)4或6
    【解析】
    【分析】
    (1)把点(﹣2,4)代入y=x2+bx+3b中,即可得到函数表达式,然后把点(2,4)代入判断即可;
    (2)利用顶点坐标公式得到﹣=m,=n,然后消去b可得到n与m的关系式.
    (3)由抛物线不经过第三象限可得b的取值范围,分别讨论x=﹣6与x=1时y为最大值求解.
    (1)
    解:经过,
    把点(﹣2,4)代入y=x2+bx+3b中得:
    4﹣2b+3b=4,
    解得b=0,
    ∴此函数表达式为:y=x2,
    当x=2时,y=4,
    ∴图象经过点(2,4);
    (2)
    解:∵抛物线函数y=x2+bx+3b(b为常数)的顶点坐标是 (m,n),
    ∴﹣=m,=n,
    ∴b=﹣2m,
    把b=﹣2m代入=n得n==﹣m2﹣6m.
    即n关于m的函数解析式为n=﹣m2﹣6m.
    (3)
    把x=0代入y=x2+bx+3b得y=3b,
    ∵抛物线不经过第三象限,
    ∴3b≥0,即b≥0,
    ∵y=x2+bx+3b=(x+)2﹣+3b,
    ∴抛物线顶点(﹣,﹣+3b),
    ∵﹣≤0,
    ∴当﹣+3b≥0时,抛物线不经过第三象限,
    解得b≤12,
    ∴0≤b≤12,﹣6≤﹣≤0,
    ∴当﹣6≤x≤1时,函数最小值为y=﹣+3b,
    把x=﹣6代入y=x2+bx+3b得y=36﹣3b,
    把x=1代入y=x2+bx+3b得y=1+4b,
    当36﹣3b﹣(﹣+3b)=16时,
    解得b=20(不符合题意,舍去)或b=4.
    当1+4b﹣(﹣+3b)=16时,
    解得b=6或b=﹣10(不符合题意,舍去).
    综上所述,b=4或6.
    【点睛】
    本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系,通过分类讨论求解.
    2、 (1)
    (2)当时,有最大值,最大值是
    (3)点的坐标为,,,
    【解析】
    【分析】
    (1)由抛物线与x轴交于A(﹣1,0)、B(3,0)两点,设抛物线为y=a(x+1)(x﹣3),将C(0,3)代入即可得y=﹣x2+2x+3;
    (2)由B(3,0),C(0,3),可推得△DEM是等腰直角三角形,DM=DE,设直线BC为y=kx+b,用待定系数法可得直线BC为y=﹣x+3,设D(m,﹣m2+2m+3),则E(m,﹣m+3),即得DE=﹣m2+3m,由二次函数性质可得线段DM的最大值;
    (3)设P(1,t),可得PB2=(1﹣3)2+t2=4+t2,PC2=(1﹣0)2+(t﹣3)2=1+(t﹣3)2,BC2=18,分三种情况:①PC为斜边时,②PB为斜边时,③BC为斜边时,列出方程求解即可.
    (1)
    解:∵抛物线与轴交于、两点,
    ∴设抛物线解析式为,
    将点坐标代入,得:,
    解得:,
    抛物线解析式为;
    (2)
    解:设直线的函数解析式为,
    ∵直线过点,,
    ∴,解得,
    ∴,
    设,,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∵轴,
    ∴,
    ∴,
    又∵,
    在中,
    ∴,
    ∵,
    ∴当时,有最大值,最大值是;
    (3)
    解:抛物线的对称轴为直线,
    设P(1,t),而B(3,0),C(0,3),
    ∴PB2=(1﹣3)2+t2=4+t2,PC2=(1﹣0)2+(t﹣3)2=1+(t﹣3)2,BC2=18,
    ①当是斜边时,,解得:;
    ②当是斜边时,,解得:;
    ③当是斜边时,,
    整理,得:,解得:,
    故点的坐标为:,,,
    【点睛】
    本题考查二次函数综合应用,涉及待定系数法、函数图象上点坐标的特征、直角三角形的判定等知识,解题的关键是用含字母的代数式表示相关点的坐标及相关线段的长度.
    3、 (1)全体实数;
    (2)0;
    (3)答案见解析;
    (4)①4;②z≥4或0≤z≤1
    【解析】
    【分析】
    (1)根据函数解析式为整式,即可得函数自变量的取值范围;
    (2)观察表格知,函数关于直线x=2对称,从而由对称性即可求得m的值;
    (3)用光滑的曲线顺次连接各点即得函数图象;
    (4)①根据图象即可求得y的最大值;
    ②观察图象即可求得z的取值范围.
    (1)
    (1)函数y=|ax2+bx+c|的自变量的取值范围为全体实数.
    故答案为:全体实数.
    (2)
    观察表格可知,函数关于直线x=2对称,与x轴交于(0,0)和(4,0),∴x=4时,m=0.
    故答案为:0.
    (3)
    函数图象如图所示:

    (4)
    ①观察图象可知,当0≤x≤4时,y的最大值是4.
    故答案为:4.
    ②观察图象可知,当z≥4或0≤z≤1时,y随x的增大而增大.
    故答案为:z≥4或0≤z≤1.
    【点睛】
    本题考查了函数及其图象、二次函数的图象与性质,关键是观察表格,数形结合.
    4、 (1)
    (2)1
    【解析】
    【分析】
    (1)利用待定系数法,即可求解;
    (2)设点 ,可得点 ,从而得到点P1,P2关于对称轴 对称,可得 ,再由点P1在该二次函数图象上,可得,即可求解.
    (1)
    解:∵二次函数y=ax2+bx(a≠0)的图象经过点A(2,4),B(4,0),
    ∴ ,解得: ,
    ∴这个二次函数的表达式为 ;
    (2)
    解:设点 ,
    ∵点P先向上平移3n(n>0)个单位得点P1,再向左平移2n个单位得点P2,
    ∴点 ,
    ∵点P1,P2均在该二次函数图象上,
    ∴点 关于对称轴 对称,
    ∴ ,
    ∴ ,即 ,
    ∵点P1在该二次函数图象上,
    ∴ ,
    ∴,
    解得: 或,
    ∵n>0,
    ∴.
    【点睛】
    本题主要考查了求二次函数的解析式,二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.
    5、 (1)y=x2+2x﹣3;
    (2)(﹣,)
    (3)(-1,2)或(-1,﹣4)或(-1,)或(-1,)
    【解析】
    【分析】
    (1)把点A,B代入y=ax2+bx﹣3即可;
    (2)设P(x,x2+2x﹣3),求出直线AB的解析,用含x的代数式表示出点E坐标,即可用含x的代数式表示出PE的长度,由函数的思想可求出点P的横坐标,进一步求出其纵坐标;
    (3)设点Q(-1,a),然后分类讨论利用勾股定理列出关于a的方程求解.
    (1)
    解:把A(﹣3,0)和C(1,0)代入y=ax2+bx﹣3,
    得,,
    解得,,
    ∴抛物线解析式为y=x2+2x﹣3;
    (2)
    解:设P(x,x2+2x﹣3),直线AB的解析式为y=kx+b,
    由抛物线解析式y=x2+2x﹣3,
    令x=0,则y=﹣3,
    ∴B(0,﹣3),
    把A(﹣3,0)和B(0,﹣3)代入y=kx+b,
    得,,
    解得,,
    ∴直线AB的解析式为y=﹣x﹣3,
    ∵PE⊥x轴,
    ∴E(x,﹣x﹣3),
    ∵P在直线AB下方,
    ∴PE=﹣x﹣3﹣( x2+2x﹣3)=﹣x2﹣3x=﹣(x+)2+,
    当x=﹣时,y=x2+2x﹣3=,
    ∴当PE最大时,P点坐标为(﹣,);
    (3)
    存在,理由如下,
    ∵x=﹣=-1,
    ∴抛物线的对称轴为直线x=-1,
    设Q(-1,a),
    ∵B(0,-3),A(-3,0),
    ①当∠QAB=90°时,AQ2+AB2=BQ2,
    ∴22+a2+32+32=12+(3+a)2,
    解得:a=2,
    ∴Q1(-1,2),
    ②当∠QBA=90°时,BQ2+AB2=AQ2,
    ∴12+(3+a)2+32+32=22+a2,
    解得:a=﹣4,
    ∴Q2(-1,﹣4),
    ③当∠AQB=90°时,BQ2+AQ2=AB2,
    ∴12+(3+a)2+22+a2=32+32,
    解得:a1=或a1=,
    ∴Q3(-1,),Q4(-1,),
    综上所述:点Q的坐标是(-1,2)或(-1,﹣4)或(-1,)或(-1,).
    【点睛】
    本题是二次函数的综合题,主要考查了二次函数图象上点的坐标特征、待定系数法求函数的解析式、二次函数的性质、勾股定理,解题的关键是用含有未知数的代数式表达点的坐标和线段的长度.

    相关试卷

    初中数学冀教版九年级下册第30章 二次函数综合与测试精品随堂练习题: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品随堂练习题,共37页。试卷主要包含了根据表格对应值,下列函数中,二次函数是等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试优秀一课一练: 这是一份冀教版九年级下册第30章 二次函数综合与测试优秀一课一练,共37页。

    数学冀教版第30章 二次函数综合与测试课时作业: 这是一份数学冀教版第30章 二次函数综合与测试课时作业,共30页。试卷主要包含了抛物线y=42+3的顶点坐标是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map