年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练冀教版九年级数学下册第三十章二次函数专项练习试题(含解析)

    2021-2022学年度强化训练冀教版九年级数学下册第三十章二次函数专项练习试题(含解析)第1页
    2021-2022学年度强化训练冀教版九年级数学下册第三十章二次函数专项练习试题(含解析)第2页
    2021-2022学年度强化训练冀教版九年级数学下册第三十章二次函数专项练习试题(含解析)第3页
    还剩35页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第30章 二次函数综合与测试优秀巩固练习

    展开

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀巩固练习,共38页。试卷主要包含了抛物线的对称轴是等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数专项练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论正确的是( )

    A.ac>0 B.a+b=1 C.4ac﹣b2≠4a D.a+b+c>0
    2、根据表格对应值:
    x
    1.1
    1.2
    1.3
    1.4
    ax2+bx+c
    ﹣0.59
    0.84
    2.29
    3.76
    判断关于x的方程ax2+bx+c=2的一个解x的范围是( )
    A.1.1<x<1.2 B.1.2<x<1.3 C.1.3<x<1.4 D.无法判定
    3、如图,给出了二次函数的图象,对于这个函数有下列五个结论:①<0;②ab>0;③;④;⑤当y=2时,x只能等于0.其中结论正确的是( )

    A.①④ B.③⑤ C.②⑤ D.③④
    4、已知二次函数,则关于该函数的下列说法正确的是( )
    A.该函数图象与轴的交点坐标是
    B.当时,的值随值的增大而减小
    C.当取1和3时,所得到的的值相同
    D.将的图象先向左平移两个单位,再向上平移5个单位得到该函数图象
    5、已知二次函数,当时,x的取值范围是,且该二次函数图象经过点,则p的值不可能是( )
    A.-2 B.-1 C.4 D.7
    6、已知二次函数的图象如图所示,并且关于x的一元二次方程有两个不相等的实数根,下列结论:①;②;③;④.其中正确结论的个数有( )

    A.1个 B.2个 C.3个 D.4个
    7、函数向左平移个单位后其图象恰好经过坐标原点,则的值为( )
    A. B. C.3 D.或3
    8、抛物线的对称轴是( )
    A.直线 B.直线 C.直线 D.直线
    9、二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是(  )

    A. B.y≤2 C.y<2 D.y≤3
    10、已知二次函数y=x2﹣2x+m,点A(x1,y1)、点B(x2,y2)(x1<x2)是图象上两点,下列结论正确的是(  )
    A.若x1+x2<2,则y1>y2 B.若x1+x2>2,则y1>y2
    C.若x1+x2<﹣2,则y1<y2 D.若x1+x2>﹣2,则y1>y2
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知二次函数,若,则y的取值范围是______.
    2、如图,在矩形中,,点E是的中点,连接,以点为原点,建立平面直角坐标系,点M是上一动点,取的中点为N,连接,则的最小值是________.(提示:两点间距离公式 )

    3、二次函数的图象的顶点坐标为______.
    4、这是小明在阅读一本关于函数的课外读物时看到的一段图文,则被墨迹污染的二次函数的二次项系数为______.由图像知,当x=﹣1时二次函数y=■x2+6x﹣5有最小值.

    5、已知二次函数的图象如图所示,有下列五个结论:①;②;③;④;⑤(为实数且).其中正确的结论有______(只填序号).

    三、解答题(5小题,每小题10分,共计50分)
    1、借鉴我们已有研究函数的经验,探索函数y=|x2﹣2x﹣3|的图像与性质,研究过程如下,请补充完整.
    (1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
    x

    ﹣2
    ﹣1
    0
    1
    2
    3
    4

    y

    m
    0
    3
    n
    3
    0
    5

    其中,m=   ,n=   ;
    (2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出函数图像;
    (3)观察函数图像:
    ①写出该函数的一条性质    ;
    ②已知函数y=x+4的图像如图所示根据函数图像,直接写出不等式x+4<|x2﹣2x﹣3|的解集.(近似值保留一位小数,误差不超过0.2)

    2、已知抛物线与x轴负半轴交于点A,与x轴正半轴交于点B,与y轴交于点C,点P为抛物线上一动点(点P不与点C重合).

    (1)当为直角三角形时,求的面积
    (2)如图,当时,过点P作轴于点Q,求BQ的长.
    (3)当以点A,B,P为顶点的三角形和相似时(不包括两个三角形全等),求m的值.
    3、阅读理解,并完成相应的问题.
    如图,重庆轨道2号线是中国西部地区第一条城市轨道交通线路,也是中国第一条跨座式单轨线路,因其列车在李子坝站穿楼而过闻名全国.小军了解到列车从牛角沱站开往李子坝站时,在距离停车线256米处开始减速.他想知道列车从减速开始,经过多少秒停下来,以及最后一秒滑行的距离.为了解决这个问题,小军通过建立函数模型来描述列车离停车线的距离s(米)与滑行时间t(秒)的函数关系,再应用该函数解决相应的问题.

    (1)建立模型
    ①收集数据:
    r(秒)
    0
    4
    8
    12
    16
    20
    24
    ……
    s(米)
    256
    196
    144
    100
    64
    36
    16
    ……
    ②建立平面直角坐标系为了观察s(米)与t(秒)的关系,建立如图所示的平面直角坐标系.
    ③描点连线:请在平面直角坐标系中将表中未描出的点补充完整,并用平滑的曲线依次连接.
    ④选择函数模型:观察这条曲线的形状,它可能是_______函数的图象.
    ⑤求函数解析式;
    解:设,因为时,,所以,则.
    请根据表格中的数据,求a,b的值.(请写出详细解答过程).

    验证:把a,b的值代入中,并将其余几对值代入求出的解析式,发现它们_______满足该函数解析式.(填“都”或“不都”)
    结论:减速阶段列车离停车线的距离s(米)与减速时间t(秒)的函数关系式为__________.
    (2)应用模型
    列车从减速开始经过_______秒,列车停止;最后一秒钟,列车滑行的距离为_______米.
    4、如图,抛物线与轴交于两点(A点在B点的左侧),与y轴交于点C,连接AC,BC,A点的坐标是(,0),点P是抛物线上的一个动点,其横坐标为m,且m>0.

    (1)求此抛物线的解析式;
    (2)若点Q是直线AC上的一个动点,且位于x轴的上方,当PQ∥y轴时,作PM⊥PQ,交抛物线于点M(点M在点P的右侧),以PQ,PM为邻边构造矩形PQNM,求该矩形周长的最小值;
    (3)设抛物线在点C与点P之间的部分(含点C和P)最高点与最低点的纵坐标之差为h.
    ①求h关于m的函数解析式,并写出自变量m的取值范围;
    ②当h=16时,直接写出△BCP的面积.
    5、如图,正比例函数y1=x与二次函数y2=x2-bx的图象相交于O(0,0),A(4,4)两点.

    (1)求 b 的值;
    (2)当 y1< y2 时,直接写出 x 的取值范围.

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    由抛物线开口方向及抛物线与轴交点位置,即可得出、,进而判断结论A;由抛物线顶点的横坐标可得出,进而判断结论B;由抛物线顶点的纵坐标可得出,进而判断结论C;由、,进而判断结论D.由此即可得出结论.
    【详解】
    解:A、抛物线开口向下,且与轴正半轴相交,
    ,,
    ,结论A错误,不符合题意;
    B、抛物线顶点坐标为,,

    ,即,结论B错误,不符合题意;
    C、抛物线顶点坐标为,,

    ,结论C错误,不符合题意;
    D、,,
    ,结论D正确,符合题意.
    故选:D.
    【点睛】
    本题考查了二次函数图象与系数的关系以及二次函数的性质,解题的关键是观察函数图象,逐一分析四个选项的正误.
    2、B
    【解析】
    【分析】
    利用表中数据可知当x=1.3和x=1.2时,代数式ax2+bx+c的值一个大于2,一个小于2,从而判断当1.2<x<1.3时,代数式ax2+bx+c的值为2.
    【详解】
    解:当x=1.3时,ax2+bx+c=2.29,
    当x=1.2时,ax2+bx+c=0.84,
    ∵0.84<2<2.29,
    ∴方程解的范围为1.2<x<1.3,
    故选:B
    【点睛】
    本题考查估算一元二次方程的近似解,解题关键是观察函数值的变化情况.
    3、D
    【解析】
    【分析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    ①由抛物线与x轴有两个交点可以推出b2-4ac>0,故①错误;
    ②由抛物线的开口方向向下可推出a<0;
    因为对称轴为x==2>0,又因为a<0,∴b>0,故ab<0;②错误;
    ③由图可知函数经过(-1,0),∴当,,故③正确;
    ④对称轴为x=,∴,故④正确;
    ⑤当y=2时,,故⑤错误;
    ∴正确的是③④
    故选:D
    【点睛】
    二次函数y=ax2+bx+c系数符号的确定:
    (1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.
    (2)b由对称轴和a的符号确定:由对称轴公式x=−判断符号.
    (3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.
    (4)b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.
    4、C
    【解析】
    【分析】
    把,代入,即可判断A,由二次函数的图象开口向上,对称轴是直线,即可判断B,当取和,代入,即可判断C,根据函数图象的平移规律,即可判断D.
    【详解】
    ∵二次函数的图象与轴的交点坐标是,
    ∴A选项错误;
    ∵二次函数的图象开口向上,对称轴是直线,
    ∴当时,的值随值的增大而增大,
    ∴B选项错误;
    ∵当取和时,所得到的的值都是11,
    ∴C选项正确;
    ∵将的图象先向左平移两个单位,再向上平移个单位得到的图象,
    ∴D选项错误.
    故选:C.
    【点睛】
    本题主要考查二次函数的图象和性质,理解二次函数的性质是解题的关键.
    5、C
    【解析】
    【分析】
    根据题意求得抛物线的对称轴,进而求得时,的取值范围,根据的纵坐标小于0,即可判断的范围,进而求解
    【详解】
    解:∵二次函数,当时,x的取值范围是,
    ∴,二次函数开口向下
    解得,对称轴为
    当时,,
    经过原点,

    根据函数图象可知,当,,
    根据对称性可得时,
    二次函数图象经过点,

    不可能是4
    故选C
    【点睛】
    本题考查了抛物线与一元一次不等式问题,求得抛物线的对称轴是解题的关键.
    6、B
    【解析】
    【分析】
    根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.
    【详解】
    解:抛物线与x轴有两个不同交点,因此b2-4ac>0,故①是错误的;
    由图象可知,当x=-1时,y=a-b+c>0,因此③是错误的;
    由开口方向可得,a>0,对称轴在y轴右侧,a、b异号,因此b-2
    因此④正确的,
    综上所述,正确的有2个,
    故选:B.
    【点睛】
    考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.
    7、C
    【解析】
    【分析】
    把函数解析式整理成顶点式形式,再根据向左平移横坐标减表示出平移后的抛物线解析式,再把原点的坐标代入计算即可得解.
    【详解】
    解:,
    向左平移个单位后的函数解析式为,
    函数图象经过坐标原点,

    解得.
    故选:C.
    【点睛】
    本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化求解更加简便,要求熟练掌握平移的规律:左加右减,上加下减.
    8、C
    【解析】
    【分析】
    抛物线的对称轴为:,根据公式直接计算即可得.
    【详解】
    解:,
    其中:,,,

    故选:C.
    【点睛】
    本题考查的是抛物线的对称轴,掌握抛物线的对称轴的公式是解本题的关键,注意对称轴是直线.
    9、A
    【解析】
    【分析】
    根据待定系数求解析式,进而求得顶点坐标,即的最大值,进而即可求得答案
    【详解】
    解:∵二次函数y=ax2+bx+c图象的对称轴为,与轴的交点为,与轴的一个交点为,
    ∴另一交点为
    设抛物线解析式为,将点代入得

    解得
    抛物线解析式为
    则顶点坐标为
    当x>0时,函数值y的取值范围是
    故选A
    【点睛】
    本题考查了待定系数法求抛物线解析式,化为顶点式是解题的关键.
    10、A
    【解析】
    【分析】
    由二次函数y=x2﹣2x+m可知对称轴为x=1,当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离小,再结合抛物线开口方向,即可判断.
    【详解】
    解:∵二次函数y=x2﹣2x+m,
    ∴抛物线开口向上,对称轴为x=1,
    ∵x1<x2,
    ∴当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,
    ∴y1>y2,
    故选:A.
    【点睛】
    本题考查了二次函数的性质,灵活应用x1+x2与2的关系确定点A、点B与对称轴的关系是解决本题的关键.
    二、填空题
    1、
    【解析】
    【分析】
    根据题目中的函数解析式和二次函数的性质可以求得y的取值范围.
    【详解】
    解:∵y=x2-4x+1=(x-2)2-3,抛物线开口向上,
    ∴当x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,
    ∵-1≤x≤4,2-(-1)=3,4-2=2,
    ∴当x=-1时y取得最大值,当x=2时,y取得最小值,
    当x=-1时,y=6,当x=2时,y=-3,
    ∴y的取值范围是-3≤y≤6,
    故答案为:-3≤y≤6.
    【点睛】
    本题考查了二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答.
    2、
    【解析】
    【分析】
    分别求出点A,C,E的坐标,求出直线BE的解析式,设点的坐标为,由中点坐标公式得,由两点之间的距离公式得:,进一步可得出AN的最小值.
    【详解】
    解:在矩形中,,点是的中点,

    ∴,
    设直线BE的解析式为y=kx,
    把E(3,3)代入y=kx,得,k=1
    直线的函数解析式为,
    设点的坐标为,
    点是上一动点,

    点是的中点,

    由两点之间的距离公式得:,
    由二次函数的性质得:在内,随的增大而增大,
    则当时,取得最小值,最小值为36,
    因此,的最小值为,
    故答案为:.
    【点睛】
    本题这一切考查了坐标与图形以及二次函数的性质等知识,熟练掌握二次函数的性质是解答本题的关键.
    3、
    【解析】
    【分析】
    根据的意义直接解答即可.
    【详解】
    解:二次函数的图象的顶点坐标是.
    故答案为.
    【点睛】
    本题考查了二次函数的性质,要熟悉顶点式的意义,并明确:(a≠0)的顶点坐标为(0,c).
    4、
    【解析】
    【分析】
    由图象可得:抛物线的对称轴为: 再利用抛物线的对称轴公式建立方程求解即可.
    【详解】
    解:由图象可得:抛物线的对称轴为:


    解得:
    故答案为:
    【点睛】
    本题考查的是二次函数的图象与性质,掌握“利用二次函数的对称轴方程求解未知系数的值”是解本题的关键.
    5、③④⑤
    【解析】
    【分析】
    先利用二次函数的开口方向,与轴交于正半轴,二次函数的对称轴为:判断的符号,可判断①,由图象可得:在第三象限,可判断②,由抛物线与轴的一个交点在之间,则与轴的另一个交点在之间,可得点在第一象限,可判断③,由在第四象限,抛物线的对称轴为: 即 可判断④,当时,,当, 此时: 可判断⑤,从而可得答案.
    【详解】
    解:由二次函数的图象开口向下可得:
    二次函数的图象与轴交于正半轴,可得
    二次函数的对称轴为: 可得
    所以: 故①不符合题意;
    由图象可得:在第三象限,

    故②不符合题意;
    由抛物线与轴的一个交点在之间,则与轴的另一个交点在之间,
    点在第一象限,
    故③符合题意;
    在第四象限,

    抛物线的对称轴为:


    故④符合题意;
    当时,,
    当,
    此时:
    故⑤符合题意;
    综上:符合题意的有:③④⑤,
    故答案为:③④⑤.
    【点睛】
    本题考查的是二次函数的图象与性质,熟练的应用二次函数的图象与性质判断代数式的符号是解题的关键.
    三、解答题
    1、 (1)5,4
    (2)见解析
    (3)①图象具有对称性,对称轴是直线x=1;②x<-1.6或x>4.3
    【解析】
    【分析】
    (1)把x=-2和x=1分别代入y=|x2-2x-3|,即可求得;
    (2)描点、连线画出图象即可;
    (3)①根据图象即可求得;
    ②根据图象即可求得.
    【小题1】
    解:把x=-2代入y=|x2-2x-3|,得y=5,
    ∴m=5,
    把x=1代入y=|x2-2x-3|,得y=4,
    ∴n=4,
    故答案为:5,4;
    【小题2】
    如图所示;

    【小题3】
    ①函数的性质:图象具有对称性,对称轴是直线x=1;
    故答案为:图象具有对称性,对称轴是直线x=1;
    ②由图象可知,不等式x+4<|x2-2x-3|的解集为x<-1.6或x>4.3.
    【点睛】
    本题考查了二次函数图象和性质,二次函数图象上点的坐标特征,一次函数与一次不等式,注意利用数形结合的思想是解此题的关键.
    2、 (1)4
    (2)2
    (3)或m=
    【解析】
    【分析】
    (1)先求出A、B、C三点的坐标,进而表示出AB、BC、AC的长,然后根据勾股定理求得m,确定C的坐标,最后运用三角形的面积公式解答即可;
    (2)先用待定系数法求得BC所在直线直线的解析式,进而求得直线AP的解析式,然后与抛物线的解析式联立即可解答;
    (3)先说明∠ABC=45°,然后分三种情况解答即可.
    (1)
    解:由抛物线开口向上,则m>0
    令x=0,则y=-2,即C点坐标为(0,-2),OC=2
    令y=0,则,解得x=-2或x=m,即点A(-2,0),点B(m,0)
    ∴OA=2,OB=m
    ∴AB=m+2
    由勾股定理可得AC2=(-2-0)2+[0-(-2)]2=8, BC2=(m-0)2+[0-(-2)]2=m2+4
    ∵当为直角三角形时,仅有∠ACB=90°
    ∴AB2= AC2+BC2,即(m+2)2=8+m2+4,解得m=2
    ∴AB=m+2=4
    ∴的面积为:·AB·OC=×4×2=4.
    (2)
    解:设BC所在直线的解析式为:y=kx+b
    则 ,解得
    ∴BC所在直线的解析式为y=x-2
    设直线AP的解析式为y=x+c
    则有:0=×(-2)+c,即c=
    ∴线AP的解析式为y=x+
    联立 解得x=-2(A点横坐标),x=m+2(P点横坐标)
    ∴点P的纵坐标为:
    ∴点P的坐标为(m+2,)
    ∴OQ=m+2
    ∴BQ=OQ-OB= m+2-m=2.
    (3)
    解:∵点P为抛物线上一动点(点P不与点C重合).
    ∴设P(x,)
    ∵在△ABC中,∠BAC=45°
    ∴当以点A,B,P为顶点的三角形和相似时,有三种情况:
    ①a.若△ABC∽△BAP

    又∵BP=AC
    ∴△ABC∽△BAP不符合题意;

    b. 若△ABP∽△BAC

    过P作PQ⊥x轴于点Q,则∠PQB=90°
    ∴∠BPQ=90°-∠PBQ=45°
    ∴PQ=BQ=m-x
    由于PQ=


    ∴x-m=0或
    ∴x=m(舍去),x=-m-2
    ∴BQ=m-(-m-2)=2m+2


    ∴m2-4m-4=0,解得:m=或m=(舍去)
    ∴m=;

    ②当∠PAB=∠BAC=45°时,分两种情况讨论:
    a. 若△ABP∽△ABC,则 ,点C与点P重合,不合题意;
    b. 若△ABP∽△BAC,则 ,
    过P作PQ⊥x轴于点Q,则∠PQA=90°
    ∴∠APQ=90°-∠PAB=45°
    ∴PQ=AQ=x+2
    由于PQ=


    ∴x+2=0或
    ∴x=-2(舍去),x=2m
    ∴AQ= =2m+2


    ∴m2-4m-4=0,解得:m=(舍去)或m=
    ∴m=;

    ③当∠APB=∠BAC=45°时,分两种情况讨论:
    a.过点A作PM//BC交抛物线于点M,则∠MAB=∠ABC,
    ∵∠MAB≠∠PAB,
    ∴∠PAB≠∠ABC,
    ∴△PAB与△BAC不相似;

    b. 取点C关于x轴的对称点,连接并延长 交抛物线于点N,则∠NBA=∠CBA,
    ∵∠PBA≠∠NBA,
    ∴∠PBA≠∠CBA,
    ∴△PAB与△BAC不相似;

    综上,m的值为m=或m=.
    【点睛】
    本题属于二次函数综合题,涉及抛物线与坐标轴的交点、勾股定理、三角形面积公式、运用待定系数法求一次函数解析式、相似三角形的判定等知识点,灵活应用相关知识成为解答本题的关键.
    3、 (1)二次, 都, s=
    (2)32,0.25
    【解析】
    【分析】
    (1)通过描点、连线,观察图形可知,图象可能是二次函数的函数的图象;将点(4,196),(8,144)代入s=at2+bt+256,得a、b的值,再将其余几对值代入求出的解析式,发现它们都满足该函数解析式,最后得到结论:减速阶段列车离停车线的距离s(米)与减速时间t(秒)的函数关系式;
    (2)让s=0,可求出列车从减速开始到列车停止的时间,然后将t=31代入s=t2-16t+256,即可求最后一秒钟,列车滑行的距离.
    (1)
    解:描点连线如下图:

    由这条曲线的形状可知,它可能是二次函数的函数的图象;
    设s=at2+bt+c(a≠0),因为t=0时,s=256,所以c=256,则s=at2+bt+256,将点(4,196),(8,144)代入s=at2+bt+256,得:

    解这个方程组得:,
    ∴s=t2-16t+256,
    当t=12时,×122-16×12+256=100,
    当t=16时,×162-16×16+256=64,
    当t=20时,×202-16×20+256=36,
    当t=24时,×242-16×24+256=16,
    ∴其余几对值代入求出的解析式,发现它们都满足该函数解析式,
    ∴结论:减速阶段列车离停车线的距离s(米)与减速时间t(秒)的函数关系式为s=t2-16t+256(t≥0);
    (2)
    ∵列车停止,
    ∴s=0,
    ∴t2-16t+256=0,
    解这个方程得:t=32,
    ∴列车从减速开始经过32秒,列车停止;
    ∴最后一秒钟时31秒,
    当t=31时,×312-16×31+256=0.25,
    ∴最后一秒钟,列车滑行的距离为0.25米.
    【点睛】
    本题考查了二次函数的性质,二元一次方程组的解法、一元二次方程的解法,做题的关键是确定二次函数的解析式.
    4、 (1)
    (2)
    (3)①;②
    【解析】
    【分析】
    (1)将点代入解析式,待定系数法求二次函数解析式即可;
    (2)根据两点求得直线的解析式,进而求得的长,根据的范围分类讨论求得的值,进而得到矩形周长与的二次函数关系式,根据二次函数的性质求得最小值即可;
    (3)①根据抛物线解析式求得顶点坐标,进而根据的纵坐标与的纵坐标求得最大与最小值求得其差即可,根据的纵坐标大于3和小于等于3求解即可;②过点作轴交于点,过点作于点,根据①中的范围可得,当时,,进而求得点的坐标,根据计算即可
    (1)
    解:∵抛物线与轴交于两点(A点在B点的左侧),与y轴交于点C,连接AC,BC,A点的坐标是(,0),
    ∴令,则,
    将点代入得
    解得
    则抛物线的解析式为
    (2)
    点P是抛物线上的一个动点,其横坐标为m,且m>0.
    点Q是直线AC上的一个动点,且位于x轴的上方,PQ∥y轴
    点在点上方,
    ,,设直线的解析式为

    解得
    直线的解析式为
    设,则

    抛物线的解析式为
    对称轴为,顶点坐标为,


    根据对称性可得
    设矩形的周长为,
    ①当时,,不能构成矩形,
    ②当时,

    当时,
    ③当时,

    对称轴为
    则当时,不存在最小值
    综上所述,矩形的周长的最小值为
    (3)
    ①抛物线的解析式为
    对称轴为,顶点坐标为,

    当时,
    解得,

    当时,
    当时,

    ②当时,

    当时,
    解得




    如图,过点作轴交于点,过点作于点,

    抛物线的解析式为
    令,则
    解得






    【点睛】
    本题考查了二次函数综合问题,待定系数法求二次函数解析式,二次函数与矩形问题,二次函数与三角形面积问题,掌握二次函数的性质与一次函数的性质是解题的关键.
    5、 (1)
    (2)或
    【解析】
    【分析】
    (1)将点A(4,4)代入进行解答即可得;
    (2)由图像即可得.
    (1)
    解:将点A(4,4)代入得,


    解得.
    (2)
    解:由图像可知,当或时,.
    【点睛】
    本题考查了正比函数,二次函数,解题的关键是掌握正比函数的性质和二次函数的性质.

    相关试卷

    初中数学冀教版九年级下册第30章 二次函数综合与测试精品课后测评:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品课后测评,共30页。试卷主要包含了抛物线,,的图象开口最大的是,二次函数y=ax2+bx+c,下列函数中,随的增大而减小的是,已知点,,都在函数的图象上,则等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试精品当堂检测题:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品当堂检测题,共29页。试卷主要包含了抛物线的对称轴是,抛物线,,的图象开口最大的是等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试优秀课后练习题:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀课后练习题,共31页。试卷主要包含了抛物线的顶点坐标为,根据表格对应值等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map