开学活动
搜索
    上传资料 赚现金

    2021-2022学年度强化训练冀教版九年级数学下册第三十章二次函数专项攻克练习题(精选含解析)

    2021-2022学年度强化训练冀教版九年级数学下册第三十章二次函数专项攻克练习题(精选含解析)第1页
    2021-2022学年度强化训练冀教版九年级数学下册第三十章二次函数专项攻克练习题(精选含解析)第2页
    2021-2022学年度强化训练冀教版九年级数学下册第三十章二次函数专项攻克练习题(精选含解析)第3页
    还剩24页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第30章 二次函数综合与测试精品课时练习

    展开

    这是一份冀教版九年级下册第30章 二次函数综合与测试精品课时练习,共27页。试卷主要包含了抛物线的顶点坐标为等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、二次函数图像的顶点坐标是(       A.(0,-2) B.(-2,0) C.(2,0) D.(0,2)2、若将抛物线y=2x2﹣1向上平移2个单位,则所得抛物线对应的函数关系式为(  )A.y=2(x﹣2)2﹣1 B.y=2(x+2)2﹣1 C.y=2x2﹣3 D.y=2x2+13、下列函数中,的增大而减小的是(       A. B.C. D.4、抛物线的顶点坐标为(  )A.(﹣4,﹣5) B.(﹣4,5) C.(4,﹣5) D.(4,5)5、二次函数的自变量与函数值的部分对应值如下表:-3-2-101-11-311-3对于下列结论:①二次函数的图像开口向下;②当时,的增大而减小;③二次函数的最大值是1;④若是二次函数图像与轴交点的横坐标,则,其中,正确的是(       A.①② B.③④ C.①③ D.①②④6、如图,二次函数yax2bxca≠0)的图象的对称轴是直线x=1,且经过点(0,2).有下列结论:①abc<0;②b2﹣4ac>0:③9a+3bc<2;④3ac<0;⑤若(﹣y1),(﹣y2),(4,y3)是抛物线上的点,则y3y1y2,其中正确结论的个数是(       A.2 B.3 C.4 D.57、抛物线yx2+4x+5的顶点坐标是(  )A.25 B.21 C.(﹣25 D.(﹣218、一次函数与二次函数在同一平面直角坐标系中的图象可能是(  )A. B.C. D.9、若函数,则当函数y=15时,自变量的值是(     A. B.5 C.或5 D.5或10、下列函数中,的增大而减小的函数是(       A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、将函数的图象向______平移______个单位长度,再向______平移______个单位长度,可以得到函数的图象.2、中国跳水队在第三十二届夏季奥林匹克运动会上获得7金5银12枚奖牌的好成绩.某跳水运动员从起跳至人水的运动路线可以看作是抛物线的一部分.如图所示,该运动员起跳点A距离水面10m,运动过程中的最高点B距池边2.5m,入水点C距池边4m,根据上述信息,可推断出点B距离水面______m.3、如图边长为n的正方形OABC的边OAOC分别在x轴和y轴的正半轴上,A1A2A3、...、An1OAn等分点,B1B2B3、...、Bn1CBn等分点,连接A1B1A2B2A3B3、...、An1Bn1,分别交于点C1C2C3、...、Cn1.当B25C25=8C25A25时,则n=_____.4、如图,函数的图象过点,下列判断:处的函数值相等.其中正确的是__(只填序号).5、最大值与最小值之和为_________.三、解答题(5小题,每小题10分,共计50分)1、某商店销售甲、乙两种礼品,每件利润分别为20元、10元,每天卖出件数分别为40件、80件.为适应市场需求,该店决定降低甲种礼品的售价,同时提高乙种礼品的售价.售卖时发现,甲种礼品单价每降1元可多卖4件,乙种礼品单价每提高1元就少卖2件.若每天两种礼品共卖出140件,则每天销售的最大利润是多少?(1)分析:设甲种礼品每件降低了x元,填写表格(用含x的式子表示,并化简); 调价后的每件利润调价后的销售量甲种礼品乙种礼品(2)解答:            2、已知二次函数yax﹣1)2﹣3(a≠0)的图象经过点(2,0).(1)求a的值.(2)求二次函数图象与x轴的交点坐标.3、如图,要用篱笆(虚线部分)围成一个矩形苗圃ABCD,其中两边靠的墙足够长,中间用平行于AB的篱笆EF隔开,已知篱笆的总长度为18米,设矩形苗圃ABCD的一边AB的长为x(m),矩形苗圃ABCD面积为y).(1)求yx的函数关系式;(2)求所围矩形苗圃ABCD的面积最大值;4、(1)解方程:2x2﹣3x﹣1=0;(2)用配方法求抛物线yx2+4x﹣5的开口方向、对称轴和顶点坐标.5、在平面直角坐标系中,抛物线轴于点,过点的直线交抛物线于点(1)求该抛物线的函数表达式;(2)若点是直线下方抛物线上的一个动点(不与点重合),求面积的最大值;(3)若点在抛物线上,点在直线上.试探究:是否存在点,使得同时成立?若存在,请直接写出点的坐标;若不存在,请说明理由. -参考答案-一、单选题1、C【解析】【分析】直接利用顶点式写出二次函数的顶点坐标即可得到正确的选项.【详解】解:抛物线的顶点坐标为故选:C.【点睛】本题考查了二次函数的性质,解题的关键是了解二次函数的顶点式,难度不大.2、D【解析】【分析】由题意知平移后的函数关系式为,进行整理即可.【详解】解:由题意知平移后的函数关系式为:故选D.【点睛】本题考查了二次函数图象的平移.解题的关键在于牢记二次函数图象平移时上加下减,左加右减.3、C【解析】【分析】根据各个选项中的函数解析式,可以判断出yx的增大如何变化,从而可以解答本题.【详解】解:A.在中,yx的增大而增大,故选项A不符合题意;B.在中,yx的增大与增大,不合题意;C.在中,当x>0时,yx的增大而减小,符合题意;D.在x>2时,yx的增大而增大,故选项D不符合题意;故选:C【点睛】本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.4、A【解析】【分析】根据抛物线的顶点坐标为 ,即可求解.【详解】解:抛物线的顶点坐标为故选:A【点睛】本题主要考查了二次函数的图象和性质,熟练掌握抛物线的顶点坐标为是解题的关键.5、A【解析】【分析】根据待定系数法确定函数解析式,再根据函数的图象与性质求解即可.【详解】解:把(-1,1),(1,-3),(-2,-3)代入,得 解得, ∴二次函数式为: ∴二次函数的图像开口向下,故①正确;∴对称轴为直线 ∴当时,的增大而减小,故②正确;时,二次函数的最大值是,故③错误;是二次函数图像与轴交点的横坐标,则,故④错误∴正确的是①②故答案为①②【点睛】本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.6、B【解析】【分析】由抛物线开口方向、对称轴以及与y轴的交点即可判断①;根据抛物线与x轴的交点即可判断②;根据函数的对称性和增减性即可判断③;根据抛物线的对称轴为直线x=1,得出b=-2a,由x=-1时,y=a-b+c<0,即可得出3a+c<0,即可判断④;根据二次函数的性质即可判断⑤.【详解】解:∵对称轴是直线x=1,且经过点(0,2),∴左同右异ab<0,c>0,abc<0,所以①正确;∵抛物线与x轴有2个交点,b2-4ac>0,所以②正确;∵抛物线对称轴是直线x=1,x=-1与x=3的函数值一样,x=0与x=2的函数值都是2,∵抛物线开口向下,对称轴为x=1,∴当x<1时,yx的增大而增大,∴9a+3b+c<2,所以③正确;∵对称轴为x=1,=1,即b=-2ax=-1时,y=a-b+c>0,∴3a+c>0,所以④错误;∵抛物线开口向下,对称轴为x=1,∴当x<1时,yx的增大而增大,∵点(4,y3)关于直线x=1的对称点为(-2,y3),且y1y3y2,所以⑤不正确;故选:B.【点睛】本题考查二次函数的图象和性质,掌握抛物线的开口方向、对称轴、顶点坐标以及抛物线与x轴的交点与系数abc的关系是正确判断的前提.7、D【解析】【分析】利用顶点公式(﹣),进行解题.【详解】解:∵抛物线yx2+4x+5x=﹣=﹣=﹣2,y=1∴顶点为(﹣21故选:D【点睛】此题主要考查二次函数的顶点坐标,解题的关键是熟知二次函数的顶点公式为(﹣).8、C【解析】【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出ab的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.【详解】A、∵二次函数图象开口向下,对称轴在y轴左侧,a<0,b<0,∴一次函数图象应该过第二、三、四象限,A不可能;B、∵二次函数图象开口向上,对称轴在y轴右侧,a>0,b<0,∴一次函数图象应该过第一、三、四象限,B不可能;C、∵二次函数图象开口向下,对称轴在y轴左侧,a<0,b<0,∴一次函数图象应该过第二、三、四象限,C可能;D、∵二次函数图象开口向下,对称轴在y轴左侧,a<0,b<0,∴一次函数图象应该过第二、三、四象限,D不可能.故选:C【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,解题的关键是根据ab的正负确定一次函数图象经过的象限.9、D【解析】【分析】根据题意,利用分类讨论的方法可以求得当函数y=15时,自变量x的值.【详解】解:当x<3时,令2x2-3=15,解得x=-3;x≥3时,令3x=15,解得x=5;由上可得,x的值是-3或5,故选:D.【点睛】本题考查了二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.10、B【解析】【分析】根据一次函数,反比例函数,二次函数,正比例函数的性质逐项分析即可.【详解】A. 的增大而增大,故A选项不符合题意. B. 的图像位于第三象限,的增大而减小,故B选项符合题意;C. ,对称轴为轴,在对称轴的左边,的增大而增大,在对称轴的右边,的增大而减小,故C选项不符合题意;D. 的增大而增大,故D选项不符合题意;故选B.【点睛】本题考查了一次函数,反比例函数,二次函数,正比例函数的性质,掌握以上性质是解题的关键.二、填空题1、          1          2【解析】【分析】根据二次函数平移的性质解答.【详解】解:∵函数的图象向左平移1个单位长度,再向下平移2个单位长度,可以得到函数的图象.故答案为:左,1,下,2.【点睛】此题考查了二次函数图象平移的性质:上加下减,左加右减,熟记性质是解题的关键.2、【解析】【分析】如图建立平面直角坐标系,求出抛物线解析式,再求顶点坐标即可.【详解】解:建立平面直角坐标系如图:根据题意可知,点A的坐标为(3,10),点C的坐标为(5,0),抛物线的对称轴为直线x=3.5,设抛物线的的解析式为yax2+bx+c,把上面信息代入得,解得,抛物线解析式为:代入得,故答案为:【点睛】本题考查了二次函数的应用,解题关键是建立平面直角坐标系,求出二次函数解析式,利用二次函数解析式的性质求解.3、75【解析】【分析】根据题意表示出OA25B25A25的长,由B25C25=8C25A25确定点C25的坐标,代入解析式计算得到答案.【详解】解:∵正方形OABC的边长为n,点A1A2,…,An-1OAn等分点,点B1B2,…,Bn-1CBn等分点,OA25=n=25,A25B25=nB25C25=8C25A25C25(25,),∵点C25上,解得n=75.故答案为:75.【点睛】本题考查的是二次函数图象上点的特征和正方形的性质,根据正方形的性质表示出点C25的坐标是解题的关键.4、①③④【解析】【分析】根据抛物线开口方向,对称轴以及与轴的交点即可判断①;根据的符号得出,即可得到,根据时,得到,即可得到,即可判断②;根据抛物线与一元二次方程的关系即可判断③;根据抛物线的对称性即可判断④.【详解】解:抛物线开口向下,抛物线交轴于正半轴,,故①正确,时,,则,故②错误,的图象过点方程的根为方程的根为,故③正确;的图象过点抛物线的对称轴为直线处的函数值相等,故④正确,故答案为:①③④.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数,二次项系数决定抛物线的开口方向:当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当同号时(即,对称轴在轴左;当异号时(即,对称轴在轴右;常数项决定抛物线与轴交点:抛物线与轴交于;△决定抛物线与轴交点个数:△时,抛物线与轴有2个交点;△时,抛物线与轴有1个交点;△时,抛物线与轴没有交点.5、##【解析】【分析】将已知式子化成,分两种情况,再利用一元二次方程根的判别式可得一个关于的不等式,然后利用二次函数的性质求出的取值范围,从而可得的最大值与最小值,由此即可得出答案.【详解】解:由得:①当时,②当时,则关于的方程根的判别式大于或等于0,整理得:解方程得:则对于二次函数,当时,的取值范围为,且综上,的取值范围为所以的最大值为3,最小值为所以的最大值与最小值之和为故答案为:【点睛】本题考查了一元二次方程根的判别式、二次函数的性质等知识,将求最值问题转化为一元二次方程问题是解题关键.三、解答题1、 (1)①,②,③(2)每天获得的最大利润为元.【解析】【分析】(1)设甲种礼品每件降低了x元,则调价后的销售量为原销量加上增加的销量,可得乙的销量为件,再求解乙调价后的利润即可;(2)设每天的销售利润为元,再利用总利润等于甲礼品的利润加上乙礼品的利润,可得函数关系式,再利用二次函数的性质可得答案.(1)解:设甲种礼品每件降低了x元,则调价后的销售量为:件,乙种礼品调价后的销售量为:件,乙种礼品调价后的利润为:元,填表如下: 调价后的每件利润调价后的销售量甲种礼品 乙种礼品  (2)解:设每天的销售利润为元,则 时,(元)所以每天获得的最大利润为元.【点睛】本题考查的是列代数式,二次函数的实际应用,理解题意,列出二次函数的关系式是解本题的关键.2、 (1)3(2)(2,0)和(0,0)【解析】【分析】(1)将(2,0)代入函数表达式,求出a值即可;(2)根据所得函数表达式,令y=0,求出x值,可得坐标.(1)解:∵二次函数yax﹣1)2﹣3(a≠0)的图象经过点(2,0),∴0=a(2-1)2-3,解得:a=3;(2)由(1)可知:二次函数的表达式为y=3(x-1)2-3,y=0,则3(x-1)2-3=0,解得:x=2或x=0,∴二次函数图象与x轴的交点坐标为(2,0)和(0,0).【点睛】本题考查了二次函数的表达式,与x轴的交点问题,解题的关键是求出函数表达式.3、 (1)y=﹣2x2+18x(2)m2【解析】【分析】(1)设矩形苗圃ABCD的一边AB的长为x(m),矩形苗圃ABCD面积为y),则,根据矩形的面积公式求解即可;(2)根据顶点坐标公式计算即可求解(1)设矩形苗圃ABCD的一边AB的长为x(m),矩形苗圃ABCD面积为y),则根据题意得:yx(18﹣2x)=﹣2x2+18x(2)二次函数y=﹣2x2+18x(0<x<9),a=﹣2<0,∴二次函数图象开口向下,且当x=﹣时,y取得最大值,最大值为y×(18﹣2×)=(m2);【点睛】本题考查了一元二次函数的应用,用代数式表示出是解题的关键.4、(1) ;(2)抛物线的开口向上,对称轴为直线 ,顶点坐标为【解析】【分析】(1)利用公式法,即可求解;(2)先将抛物线解析式化为顶点式,即可求解.【详解】解:(1) (2) ∴抛物线的开口向上,对称轴为直线 ,顶点坐标为【点睛】本题主要考查了解一元二次方程,二次函数的图象和性质,熟练掌握一元二次方程的解法,二次函数的图象和性质是解题的关键.5、 (1)(2)(3)存在,【解析】【分析】(1)利用待定系数法即可求得答案;(2)如图1,过点PPDy轴,交x轴于点D,交BC于点E,作CFPD于点F,连接PBPC,设点Pmm2-2m-3),则点Em,可得出PE=,再通过解方程组求出点C的坐标为,利用三角形面积公式和二次函数性质即可得出答案;(3)设Mtt2-2t-3),Nn,作MGy轴于点GNHx轴于H,证明△OGM≌△OHNAAS),得出GM=NHOG=OH,建立方程组求解即可.(1)将点代入中,得:解得,∴该抛物线表达式为:(2)如图1,过点PPD//y轴,交x轴于点D,交BC于点E,作于点F,连接PBPC设点,则点联立方程组解得,∵点B的坐标为(3,0)∴点C的坐标为(其中)∴这个二次函数有最大值,∴当时,的最大值为(3)存在,①如图②, NnMGy轴于点GNHx轴于H∴∠OGM=∠OHN=90°,OM=ON,∠MON=90°,∠GOH=90°,∴∠MOG=∠NOH在△OGM与△OHN中,∴△OGM≌△OHNAAS),GM=NHOG=OH解得:N1(3,0),N2②如图3,设Mtt2﹣2t﹣3),NnMGx轴于点GNHx轴于H∴∠OGM=∠OHN=90°,OM=ON,∠MON=90°,∠GOH=90°,∴∠MOG=∠NOH在△OGM与△OHN中,∴△OGM≌△OHNAAS),GM=NHOG=OH解得:综上所述,点N的坐标为【点睛】本题考查了待定系数法求函数的解析式、二次函数的图象与性质、几何图形的旋转、全等三角形的判定与性质及一元二次方程等知识点,运用数形结合思想、分类讨论思想及熟练掌握全等三角形判定和性质及二次函数性质是解题的关键. 

    相关试卷

    数学九年级下册第30章 二次函数综合与测试精品练习:

    这是一份数学九年级下册第30章 二次函数综合与测试精品练习,共23页。试卷主要包含了下列函数中,随的增大而减小的是等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试精品随堂练习题:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品随堂练习题

    冀教版九年级下册第30章 二次函数综合与测试优秀综合训练题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试优秀综合训练题,共27页。试卷主要包含了二次函数的最大值是,同一直角坐标系中,函数和等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map