冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后复习题
展开九年级数学下册第二十九章直线与圆的位置关系同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、平面内,⊙O的半径为3,若点P在⊙O外,则OP的长可能为( )
A.4 B.3 C.2 D.1
2、已知半径为5的圆,直线l上一点到圆心的距离是5,则直线和圆的位置关系为( )
A.相切 B.相离 C.相切或相交 D.相切或相离
3、半径为10的⊙O,圆心在直角坐标系的原点,则点(8,6)与⊙O的位置关系是( )
A.在⊙O上 B.在⊙O内 C.在⊙O外 D.不能确定
4、如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=20°,则∠D等于( )
A.20° B.30° C.50° D.40°
5、若正六边形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )
A.6,3 B.6,3 C.3,6 D.6,3
6、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )
A.相交 B.相切
C.相离 D.不确定
7、如图,在中,以AB为直径的圆交AC于点D,的切线DE交BC于点E,若,于点E且,则的半径为( ).
A.4 B. C.2 D.
8、如图,AB为⊙O的切线,切点为A,连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为( )
A.54° B.36° C.32° D.27°
9、已知M(1,2),N(3,﹣3),P(x,y)三点可以确定一个圆,则以下P点坐标不满足要求的是( )
A.(3,5) B.(﹣3,5) C.(1,2) D.(1,﹣2)
10、如图,面积为18的正方形ABCD内接于⊙O,则⊙O的半径为( )
A. B.
C.3 D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,PA,PB分别切⊙O于点A,B,Q是优弧上一点,若∠P=40°,则∠Q的度数是________.
2、如图,过⊙O外一点P,作射线PA,PB分别切⊙O于点A,B,,点C在劣弧AB上,过点C作⊙O的切线分别与PA,PB交于点D,E.则______度.
3、如图,AB、CD为一个正多边形的两条边,O为该正多边形的中心,若∠ADB=12°,则该正多边形的边数为 _____.
4、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________.
5、Rt的两条直角边分别是一元二次方程的两根,则的外接圆半径为_____.
三、解答题(5小题,每小题10分,共计50分)
1、苏科版教材八年级下册第94页第19题,小明在学过圆之后,对该题进行重新探究,请你和他一起完成问题探究.
【问题探究】小明把原问题转化为动点问题,如图1,在边长为6cm的正方形ABCD中,点E从点A出发,沿边AD向点D运动,同时,点F从点B出发,沿边BA向点A运动,它们的运动速度都是2cm/s,当点E运动到点D时,两点同时停止运动,连接CF、BE交于点M,设点E, F运动时问为t秒.
(1)【问题提出】如图1,点E,F分别在方形ABCD中的边AD、AB上,且,连接BE、CF交于点M,求证:.请你先帮小明加以证明.
(2)如图1,在点E、F的运动过程中,点M也随之运动,请直接写出点M的运动路径长 cm.
(3)如图2,连接CE,在点E、F的运动过程中.
①试说明点D在△CME的外接圆O上;
②若①中的O与正方形的各边共有6个交点,请直接写出t的取值范围.
2、如图,点E是的内心,AE的延长线交BC于点F,交的外接圆点D.过D作直线.
(1)求证:DM是的切线;
(2)求证:;
(3)若,,求的半径.
3、如图,在中,,BO平分,交AC于点O,以点O为圆心,OC长为半径画.
(1)求证:AB是的切线;
(2)若,,求的半径.
4、如图,中,.
(1)用直尺和圆规作,使圆心在边上,且与、所在直线相切(不写作法,保留作图痕迹);
(2)在(1)的条件下,再从以下两个条件①“,的周长为12cm;②,”中选择一个作为条件,并求的半径.
5、如图,是的直径,是圆上两点,且有,连结,作的延长线于点.
(1)求证:是的切线;
(2)若,求阴影部分的面积.(结果保留)
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据点与圆的位置关系得出OP>3即可.
【详解】
解:∵⊙O的半径为3,点P在⊙O外,
∴OP>3,
故选:A.
【点睛】
本题考查点与圆的位置关系,解答的关键是熟知点与圆的位置关系:设平面内的点与圆心的距离为d,圆的半径为r,则点在圆外d>r,点在圆上d=r,点在圆内d<r.
2、C
【解析】
【分析】
根据若直线上一点到圆心的距离等于圆的半径,则圆心到直线的距离等于或小于圆的半径,此时直线和圆相交或相切.
【详解】
解:∵半径为5的圆,直线l上一点到圆心的距离是5,
∴圆心到直线的距离等于或小于5,
∴直线和圆的位置关系为相交或相切,
故选:C.
【点睛】
本题考查了直线和圆的位置关系,判断的依据是半径和直线到圆心的距离的大小关系:设⊙O的半径为r,圆心O到直线l的距离为d,①直线l和⊙O相交⇔d<r;②直线l和⊙O相切⇔d=r;③直线l和⊙O相离⇔d>r.
3、A
【解析】
【分析】
先根据两点之间的距离公式可得点(8,6)到原点的距离为10,再根据点与圆的位置关系即可得.
【详解】
解:由两点距离公式可得点(8,6)到原点的距离为,
又的半径为10,
∴点(8,6)到圆心的距离等于半径,
点(8,6)在上,
故选A.
【点睛】
本题考查了两点之间的距离公式、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键.
4、C
【解析】
【分析】
连接CO利用切线的性质定理得出∠OCD=90°,进而求出∠DOC=40°即可得出答案.
【详解】
解:连接OC,
∵DC切⊙O于点C,
∴∠OCD=90°,
∵∠A=20°,
∴∠OCA=20°,
∴∠DOC=40°,
∴∠D=90°-40°=50°.
故选:C.
【点睛】
本题主要考查了切线的性质以及三角形外角性质等知识,根据已知得出∠OCD=90°是解题关键.
5、B
【解析】
【分析】
如图1,⊙O是正六边形的外接圆,连接OA,OB,求出∠AOB=60°,即可证明△OAB是等边三角形,得到OA=AB=6;如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,先求出∠AO1B=60°,然后根据等边三角形的性质和勾股定理求解即可.
【详解】
解:(1)如图1,⊙O是正六边形的外接圆,连接OA,OB,
∵六边形ABCDEF是正六边形,
∴∠AOB=360°÷6=60°,
∵OA=OB,
∴△OAB是等边三角形,
∴OA=AB=6;
(2)如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,
∵六边形ABCDEF是正六边形,
∴∠AO1B=60°,
∵O1A= O1B,
∴△O1AB是等边三角形,
∴O1A= AB=6,
∵O1M⊥AB,
∴∠O1MA=90°,AM=BM,
∵AB=6,
∴AM=BM,
∴O1M.
故选B.
【点睛】
本题主要考查了正多边形与圆,等边三角形的性质与判定,勾股定理,熟知正多边形与圆的知识是解题的关键.
6、B
【解析】
【分析】
根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
【详解】
解:连接,
,点O为AB中点.
CO为⊙C的半径,
是的切线,
⊙C 与AB的位置关系是相切
故选B
【点睛】
本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
7、C
【解析】
【分析】
连接OD、BD,利用三角形外角的性质得到∠BOD=60°,证得△BOD是等边三角形,再利用切线的性质以及含30度角的直角三角形的性质求得BD=2BE=2,即可求解.
【详解】
解:连接OD、BD,
∵∠CAB=30°,OD=OA,
∴∠CAB=∠ODA=30°,
∴∠BOD=∠CAB+∠ODA=60°,
∵OD=OB,
∴△BOD是等边三角形,
∵DE是⊙O的切线,
∴∠ODE=90°,
∴∠BDE=30°,
∵DE⊥BC于点E且BE=1,
∴BD=2BE=2,
∴OB=BD=2,
即⊙O的半径为2,
故选:C.
.
【点睛】
本题考查了切线的性质,含30度角的直角三角形的性质,等边三角形的判定和性质,正确作出辅助线,灵活应用定理是解决问题的关键.
8、D
【解析】
【分析】
由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°-∠ABO=54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.
【详解】
解:∵AB为⊙O的切线,
∴∠OAB=90°,
∵∠ABO=36°,
∴∠AOB=90°﹣∠ABO=54°,
∵OA=OD,
∴∠ADC=∠OAD,
∵∠AOB=∠ADC+∠OAD,
∴∠ADC=∠AOB=27°;
故选:D.
【点睛】
本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.
9、C
【解析】
【分析】
先利用待定系数法求出直线的解析式,再把每点代入函数解析式,根据不在同一直线上的三点能确定一个圆即可得出答案.
【详解】
解:设直线的解析式为,
将点代入得:,解得,
则直线的解析式为,
A、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;
B、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;
C、当时,,则此时点在同一直线上,不可以确定一个圆,此项符合题意;
D、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;
故选:C.
【点睛】
本题考查了确定一个圆、求一次函数的解析式,熟练掌握确定一个圆的条件是解题关键.
10、C
【解析】
【分析】
连接OA、OB,则为等腰直角三角形,由正方形面积为18,可求边长为,进而通过勾股定理,可得半径为3.
【详解】
解:如图,连接OA,OB,则OA=OB,
∵四边形ABCD是正方形,
∴,
∴是等腰直角三角形,
∵正方形ABCD的面积是18,
∴,
∴,即:
∴
故选C.
【点睛】
本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键.
二、填空题
1、70°##70度
【解析】
【分析】
连接OA、OB,根据切线性质可得∠OAP=∠OBP=90°,再根据四边形的内角和为360°求得∠AOB,然后利用圆周角定理求解即可.
【详解】
解:连接OA、OB,
∵PA,PB分别切⊙O于点A,B,
∴∠OAP=∠OBP=90°,又∠P=40°,
∴∠AOB=360°-90°-90°-40°=140°,
∴∠Q=∠AOB=70°,
故答案为:70°.
【点睛】
本题考查切线性质、四边形内角和为360°、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键.
2、65
【解析】
【分析】
连接OA,OC,OB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分,EO平分,再由各角之间的数量关系可得,,根据等量代换可得,代入求解即可.
【详解】
解:如图所示:连接OA,OC,OB,
∵PA、PB、DE与圆相切于点A、B、E,
∴,,,
∵,
∴,
∵,
∴DO平分,EO平分,
∴,,
∴,,
∴,
故答案为:65.
【点睛】
题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.
3、15##十五
【解析】
【分析】
根据圆周角定理可得正多边形的边AB所对的圆心角∠AOB=24°,再根据正多边形的一条边所对的圆心角的度数与边数之间的关系可得答案.
【详解】
解:如图,设正多边形的外接圆为⊙O,连接OA,OB,
∵∠ADB=12°,
∴∠AOB=2∠ADB=24°,
而360°÷24°=15,
∴这个正多边形为正十五边形,
故答案为:15.
【点睛】
本题考查正多边形与圆,圆周角,掌握圆周角定理是解决问题的关键,理解正多边形的边数与相应的圆心角之间的关系是解决问题的前提.
4、 4
【解析】
【分析】
设一直角边长为x,另一直角边长为(6-x)根据勾股定理,解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求外接圆的半径为cm,利用三角形面积公式求即可.
【详解】
解:设一直角边长为x,另一直角边长为(6-x),
∵三角形是直角三角形,
∴根据勾股定理,
整理得:,
解得,
这个直角三角形的斜边长为外接圆的直径,
∴外接圆的半径为cm,
三角形面积为.
故答案为;.
【点睛】
本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.
5、2.5##
【解析】
【分析】
根据题意先解一元二次方程,进而根据直角三角形的外接圆的半径等于斜边的一边,即可求得答案.
【详解】
解:,
,
解得,
Rt的两条直角边分别为3,4,
斜边长为,
直角三角形的外接圆的圆心在斜边上,且为斜边的中点,
的外接圆半径为.
【点睛】
本题考查的是三角形的外接圆与外心,熟知直角三角形的外心是斜边的中点是解答此题的关键.
三、解答题
1、 (1)见解析
(2)
(3)①见解析;②
【解析】
【分析】
(1)根据正方形的性质以及动点的路程相等,证明,根据同角的余角相等,即可证明,即;
(2)当t=0时,点M与点B重合,当时,点随之停止,求得运动轨迹为圆,根据弧长公式进行计算即可;
(3)①根据(2)可得△CME的外接圆的圆心O是斜边CE的中点,继而判断点D、C、M、E在同一个圆()上;②当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H,在Rt△CHO中求得半径,进而勾股定理求得,即可求得当时,与正方形的各边共有6个交点.
(1)
四边形是正方形,
,
又的运动速度都是2cm/s,
即
(2)
∵.
∴点M在以CB为直径的圆上,如图1,当t=0时,点M与点B重合;
如图2,当t=3时,点M为正方形对角线的交点.点M的运动路径为圆,其路径长.
故答案为:
(3)
①如图3.由前面结论可知:
∴△CME的外接圆的圆心O是斜边CE的中点,
则
在Rt△CDE中,,O是CE的中点.
∴,
∴
∴点D、C、M、E在同一个圆()上,
即点D在△CME的外接圆上;.
②.
如图4,当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.
如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H.
∵AB与相切,
∴,
又∵,
∴,
设的半径为R.由题意得:
在Rt△CHO中,,解得
∴
∴,即
∴如图5,当时,与正方形的各边共有6个交点.
【点睛】
本题考查了求弧长,切线的性质,直径所对的圆周角是直角,三角形的外心,正方形的性质,全等三角形的性质与判定,分类讨论是解题的关键.
2、 (1)见解析
(2)见解析
(3)⊙O的半径为5.
【解析】
【分析】
(1)连接OD交BC于H,根据圆周角定理和切线的判定即可证明;
(2)连接BD,由点E是△ABC的内心,得到∠ABE=∠CBE,∠DBC=∠BAD,推出∠BED=∠DBE,根据等角对等边得到BD=DE;
(3)根据垂径定理和勾股定理即可求出结果.
(1)
证明:连接OD交BC于H,如图,
∵点E是△ABC的内心,
∴AD平分∠BAC,
即∠BAD=∠CAD,
∴,
∴OD⊥BC,BH=CH,
∵DM∥BC,
∴OD⊥DM,
∴DM是⊙O的切线;
(2)
证明:∵点E是△ABC的内心,
∴∠ABE=∠CBE,
∵,
∴∠DBC=∠BAD,
∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,
即∠BED=∠DBE,
∴BD=DE;
(3)
解:设⊙O的半径为r,
连接OD,OB,如图,
由(1)得OD⊥BC,BH=CH,
∵BC=8,
∴BH=CH=4,
∵DE=2,BD=DE,
∴BD=2,
在Rt△BHD中,BD2=BH2+HD2,
∴(2)2=42+HD2,解得:HD=2,
在Rt△BHO中,
r2=BH2+(r-2)2,解得:r=5.
∴⊙O的半径为5.
【点睛】
本题考查了三角形的内心,切线的判定与性质,三角形的外接圆与外心,圆周角定理,垂径定理,解决本题的关键是综合运用以上知识.
3、 (1)见解析
(2)2.4.
【解析】
【分析】
(1)过O作OD⊥AB交AB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案;
(2)设圆O的半径为r,即OC=r,由得BC=3r,由勾股定理求得AD=,AB=3r+根据方程求解即可.
(1)
如图所示:过O作OD⊥AB交AB于点D.
∵OC⊥BC,且BO平分∠ABC,
∴OD=OC,
∵OC是圆O的半径
∴AB与圆O相切.
(2)
设圆O的半径为r,即OC=r,
∵
∴
∴
∵OC⊥BC,且OC是圆O的半径
∴BC是圆O的切线,
又AB是圆O的切线,
∴BD=BC=3r
在中,
∴
∴
在中,
∴
整理得,
解得,,(不合题意,舍去)
∴的半径为2.4
【点睛】
此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.
4、 (1)见解析
(2)cm
【解析】
【分析】
(1)作∠ABC的平分线,交AC于点O,再以点O为圆心、OC为半径作圆;
(2)记⊙O与AB的切点为E,连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r,在Rt△AOE中,由AO2=AE2+OE2列出关于r的方程求解即可.
①设AC=3x,AB=5x,用勾股定理表示出BC的长,根据的周长为12cm,列方程求出x,从而可求出三边的长;
②设AC=3x,AB=5x,用勾股定理表示出BC的长,根据,列方程求出x,从而可求出三边的长;
(1)
解:如图,
(2)
解:如图,设与相切于点.连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r.
①∵,∴设AC=3x,AB=5x,
∴BC==4x,
∵的周长为12cm,
∴3x+4x+5x=12,
∴x=1,
∴AC=3,AB=5,
∵⊙O 与 AB 、 BC 所在直线相切
∴BE=BC=4,
∴AE=AB-BE=5-4=1,AO=3-r,
在Rt△AOE中,
∵AO2=AE2+OE2,
∴(3-r)2=12+r2,
∴r=;
②∵,∴设AC=3x,AB=5x,
∴BC==4x,
∵,
∴4x=12,
∴x=1,
∴AC=3,AB=5,
∵⊙O 与 AB 、 BC 所在直线相切
∴BE=BC=4,
∴AE=AB-BE=5-4=1,AO=3-r,
在Rt△AOE中,
∵AO2=AE2+OE2,
∴(3-r)2=12+r2,
∴r=;
即⊙O的半径为cm.
【点睛】
本题考查了作图—复杂作图,勾股定理,切线的性质,以及切线长定理,解题的关键是掌握角平分线的尺规作图和性质、切线的性质和切线长定理及勾股定理.
5、 (1)见解析
(2)
【解析】
【分析】
(1)要证明DE是⊙O的切线,所以连接OD,只要求出∠ODE=90°即可解答;
(2)连接BD,利用Rt△ADB的面积加上弓形面积即可求出阴影部分的面积.
(1)
证明:连接OD,
∵,
∴∠CAD=∠BAD,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠CAD=∠ODA,
∴AE∥OD,
∴∠E+∠ODE=90°,
∵DE⊥AC,
∴∠E=90°,
∴∠ODE=180°﹣∠E=90°,
∵OD是圆O的半径,
∴DE是⊙O的切线;
(2)
连接BD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠ADE=60°,∠E=90°,
∴∠CAD=90°﹣∠ADE=30°,
∴∠DAB=∠CAD=30°,
∴AB=2BD,
∵,
∴
∴BD=2,BA=4,
∴OD=OB=2,
∴△ODB是等边三角形,
∴∠DOB=60°,
∴△ADB的面积=AD•DB
=×2×2
=2,
∵OA=OB,
∴△DOB的面积=△ADB的面积=,
∴阴影部分的面积为:
△ADB的面积+扇形DOB的面积﹣△DOB的面积
=2﹣
=,
∴阴影部分的面积为:.
【点睛】
本题考查了切线的判定与性质,圆周角定理,扇形的面积公式,勾股定理,含30°角的直角三角形,根据题目的已知条件并结合图形,添加适当的辅助线是解题的关键.
九年级下册第29章 直线与圆的位置关系综合与测试精品课后测评: 这是一份九年级下册第29章 直线与圆的位置关系综合与测试精品课后测评,共37页。
冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品随堂练习题: 这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品随堂练习题,共31页。试卷主要包含了已知M等内容,欢迎下载使用。
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后作业题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后作业题,共32页。